A Variation-Diminishing Generalized Spline Approximation Method ${ }^{1}$

Samuel Karlin and John M. Karon
Department of Mathematics, Stanford University, Stanford, California 94305

Section 1. Introduction

In this paper we will define a generalized-spline approximation method which is variation-diminishing and preserves functions which are linear in a generalized sense. (Variation-diminishing transformations are defined in Definition 1.3.) In Section 3 we will define an approximating spline with an infinite number of knots. The modifications needed to prove similar results for splines defined on a finite interval with a finite number of knots are indicated in Section 5 . Our results generalize the work of Schoenberg reported in [6], where he stated without proofs corresponding results for the special case of polynomial splines.

Our generalized splines are piecewise solutions of $\mathscr{M}_{n} u=0$, where \mathscr{M}_{n} is a differential expression of the form

$$
\begin{equation*}
\left(\mathscr{M}_{n} u\right)(x)=\left(\frac{1}{w_{n+1}(x)} \frac{d}{d x} \frac{1}{w_{n}(x)} \frac{d}{d x} \frac{1}{w_{n-1}(x)} \cdots \frac{d}{d x} \frac{1}{w_{1}(x)}\right) u(x) \tag{1.1}
\end{equation*}
$$

with $w_{j}(x)>0$ and $w_{j}(x)$ of continuity class C^{n}. It will be useful to define

$$
\begin{align*}
& \left(L_{0} u\right)(x)=u(x), \\
& \left(L_{j} u\right)(x)=\left(\frac{d}{d x} \frac{1}{w_{j}(x)} \frac{d}{d x} \frac{1}{w_{j-1}(x)} \cdots \frac{d}{d x} \frac{1}{w_{1}(x)}\right) u(x), \quad i=1,2, \ldots, n . \tag{1.2}
\end{align*}
$$

A basic set of solutions for $\mathscr{M}_{n} u=0$ is

$$
\begin{align*}
& \phi_{1}(x)=w_{1}(x), \\
& \phi_{2}(x)=w_{1}(x) \int_{a}^{x} w_{2}\left(t_{2}\right) d t_{2}, \\
& \phi_{j}(x)=w_{1}(x) \int_{a}^{x} w_{2}\left(t_{2}\right) d t_{2} \int_{a}^{t_{2}} w_{3}\left(t_{3}\right) d t_{3} \ldots \int_{a}^{t j-1} w_{j}\left(t_{j}\right) d t_{j}, \quad j=3,4, \ldots, n \tag{1.3}
\end{align*}
$$

where α is a fixed point. Actually, by suitable transformations of the dependent and independent variables, we could assume that $\phi_{1}(x) \equiv 1$ and $\phi_{2}(x)=x-\alpha$. Note that $\left(L_{t-1} \phi_{j}\right)(\alpha)=\delta_{l j} w_{j}(\alpha), i, j=1,2, \ldots, n$.

[^0]Definition 1.1. $S(x)$ is a generalized spline on (a, b) associated with \mathscr{M}_{n}, with simple knots $\left\{x_{j}\right\}$, if $\left(\mathscr{M}_{n} S\right)(x)=0$ for $x \in(a, b), x \neq x_{j}$, and $S(x) \in C^{n-2}(a, b)$.

The following notation is useful.
Definition 1.2. Let $f(x)$ be defined on a subset X of the real line. $S^{-}(f, X)$ is the number of sign changes of $f(x)$ as x traverses X, where zeros of $f(x)$ are not counted as changes in sign (see [3], page 20).

Definition 1.3. A transformation T which maps a family of functions \mathscr{F} defined on X into functions defined on X_{1}, is called variation diminishing if

$$
S^{-}\left(T f ; X_{1}\right) \leqslant S^{-}(f ; X)
$$

for all functions f in \mathscr{F}.
Variation-diminishing transformations are investigated extensively in [3].
Using these definitions, we can state our basic results.
Theorem 3.3. Let $\left\{x_{j}\right\}_{j=-\infty}^{\infty}$ satisfy: $x_{j}<x_{j+1}$ for all $j ; \lim _{j \rightarrow-\infty} x_{j}=a ; \lim _{j \rightarrow \infty} x_{j}=b$ (we allow $a=-\infty, b=\infty$). Let f be defined on (a, b) and continuous. We can find splines $N_{j}(x),-\infty<j<\infty$, associated with \mathscr{M}_{n}, with simple knots $\left\{x_{j}\right\}_{j=-\infty}$, and points $z_{j},-\infty<j<\infty, a<z_{j}<z_{j+1}<b$, such that

$$
\begin{gather*}
\phi_{i}(x)=\sum_{j=-\infty}^{\infty} \phi_{i}\left(z_{j}\right) N_{j}(x), \quad i=1,2 ; a<x<b \tag{1.4}\\
S^{-}\left(\sum_{j=-\infty}^{\infty} f\left(z_{j}\right) N_{j}(x) ;(a, b)\right) \leqslant S^{-}(f ;(a, b)) \tag{1.5}
\end{gather*}
$$

The $N_{j}(x)$ and z_{j} are independent of $f(x)$. (The convergence of $\sum_{j=-\infty}^{\infty} f\left(z_{j}\right) N_{j}(x)$ will hold, since, for each x, only a finite number of terms of the sum are distinct from zero.)

ThEOREM 5.4. Let $-\infty<a<x_{1}<x_{2}<\ldots<x_{m}<b<\infty$. Let f be a continuous function defined in $[a, b]$. We can find splines $N_{j}(x), j=1,2, \ldots, m+n$, associated with \mathscr{M}_{n} with simple $\left\{x_{j}\right\}_{j_{1}=1}^{m}$ and knots of multiplicity n at $x=a$ (see Definition 5.1), and points $z_{j}, a=z_{1}<z_{2}<\ldots<z_{m+n}=b$, such that

$$
\begin{gathered}
\phi_{l}(x)=\sum_{j=1}^{m+n} \phi_{l}\left(z_{j}\right) N_{j}(x), \quad i=1,2 ; a \leqslant x \leqslant b, \\
S^{-}\left(\sum_{j=1}^{m+n} f\left(z_{j}\right) N_{j}(x) ;[a, b]\right) \leqslant S^{-}(f ;[a, b]) .
\end{gathered}
$$

The $N_{j}(x)$ and z_{j} are independent of $f(x)$.

The fact that the spline approximations are variation-diminishing and preserve generalized linear functions implies that they preserve generalized convexity properties, in the following sense: with $S(x ; f)=\sum f\left(z_{j}\right) N_{j}(x)$,

$$
\begin{aligned}
S^{-}\left(S(x ; f)-a_{1} \phi_{1}(x)-a_{2} \phi_{2}(x) ;(a, b)\right) & =S^{-}\left(S\left(x ; f-a_{1} \phi_{1}-a_{2} \phi_{2}\right) ;(a, b)\right) \\
& \leqslant S^{-}\left(f-a_{1} \phi_{1}-a_{2} \phi_{2} ;(a, b)\right) .
\end{aligned}
$$

Thus, if f is a generalized convex or concave function on (a, b), so is the approximating spline $S(x ; f)$. (Generalized convexity is discussed in [3], Chapter 6.)

Schoenberg announced the analogous results for polynomial splines in [6], i.e., all $w_{j}(x)$ are constant, so $\mathscr{M}_{n}=d^{n} / d x^{n}$ and $\phi_{j}(x)=(x-\alpha)^{j}$. He was able to evaluate the nodes z_{j} and splines $N_{j}(x)$ in some special cases and obtain convergence estimates.

Section 2. Background for Splines with Simple Knots

Generalized splines on (a, b) associated with the differential expression \mathscr{M}_{n} are defined in Definition 1.1. Our results are based on a representation formula for such splines as linear combinations of certain generalized basic spline functions which were introduced by Karlin in [3] in the study of self-adjoint differential expressions of the form (1.1). By modifying that definition, we can consider non-self-adjoint differential expressions.

Let $\hat{\mathscr{M}}_{n}$ be the formal differential operator adjoint to \mathscr{M}_{n} :

$$
\begin{equation*}
\hat{\mathscr{M}}_{n} u(x)=(-1)^{n}\left(\frac{1}{w_{1}(x)} \frac{d}{d x} \frac{1}{w_{2}(x)} \frac{d}{d x} \frac{1}{w_{3}(x)} \cdots \frac{d}{d x} \frac{1}{w_{n+1}(x)}\right) u(x) \tag{2.1}
\end{equation*}
$$

Analogously to (1.2) and (1.3), we define

$$
\begin{align*}
& \left(\hat{L}_{0} u\right)(x)=u(x) \\
& \left(\hat{L}_{j} u\right)(x)=\left(\frac{d}{d x} \frac{1}{w_{n+2-j}(x)} \frac{d}{d x} \frac{1}{w_{n+3-j}(x)} \ldots \frac{d}{d x} \frac{1}{w_{n+1}(x)}\right) u(x), \quad i=1,2, \ldots, n \tag{2.2}
\end{align*}
$$

and

$$
\begin{align*}
\hat{\phi}_{1}(x)= & w_{n+1}(x), \\
\hat{\phi}_{2}(x)= & w_{n+1}(x) \int_{\alpha}^{x} w_{n}\left(t_{n}\right) d t_{n}, \\
\hat{\phi}_{j}(x)= & w_{n+1}(x) \int_{\alpha}^{x} w_{n}\left(t_{n}\right) d t_{n} \int_{\alpha}^{t_{n}} w_{n-1}\left(t_{n-1}\right) d t_{n-1} \ldots \\
& \int_{\alpha}^{t_{n+3-j}} w_{n+2-j}\left(t_{n^{\prime} \cdot 2-j}\right) d t_{n+2-j}, \quad j=3,4, \ldots, n, \tag{2.3}
\end{align*}
$$

where α is a fixed point.
$\left\{\hat{\phi}_{j}(x)\right\}_{j=1}^{n}$ is a basic set of solutions for $\hat{\mathscr{M}}_{n} u=0$. The fundamental solution associated with \hat{M}_{n} is

$$
\hat{\phi}_{n}(x ; s)=\left\{\begin{array}{lr}
0 & x<s \tag{2.4}\\
w_{1}(s) w_{n+1}(x) \int_{s}^{x} w_{n}\left(t_{n}\right) d t_{n} \int_{s}^{t_{n}} w_{n-1}\left(t_{n-1}\right) d t_{n-1} \ldots \int_{s}^{t 3} w_{2}\left(t_{2}\right) d t_{2} \\
& s<x
\end{array}\right.
$$

For fixed x, it is a generalized spline associated with $\hat{\mathscr{M}}_{n}$, with a simple knot at $s=x$. It is useful to define

$$
\begin{align*}
& \hat{\phi}_{j, n}(x ; s)=\hat{L}_{j-1}^{(x)} \phi_{n}(x ; s) \\
& =w_{1}(s) w_{n+2-j}(x) \int_{s}^{x} w_{n+1-j}\left(t_{n+1-j}\right) d t_{n+1-j} \ldots \int_{s}^{t_{3}} w_{2}\left(t_{2}\right) d t_{2}, \\
& s<x, \quad j=2,3, \ldots, n, \tag{2.5}\\
& \hat{\phi}_{j, n}(x)=\hat{\phi}_{j, n}(x ; \alpha) / w_{1}(\alpha)=\hat{L}_{j-1} \hat{\phi}_{n}(x), \quad j=2,3, \ldots, n ; \tag{2.6}
\end{align*}
$$

the differentiations in (2.5) are to be made with respect to x.
We will assume that we deal with splines with simple knots $\left\{x_{j}\right\}_{j=-\infty}^{\infty}$, where $a=\lim _{j \rightarrow-\infty} x_{j}, b=\lim _{j \rightarrow \infty} x_{j}$, and $x_{j}<x_{j+1}$.

Definition 2.1. The basic spline functions (B-splines) for the differential expression \mathscr{M}_{n} and knots $\left\{x_{j}\right\}_{j=-\infty}^{\infty}$, are

$$
M_{k}(x)=\frac{\left|\begin{array}{cccc}
\hat{\phi}_{1}\left(x_{k}\right) & \ldots & \hat{\phi}_{n}\left(x_{k}\right) & \hat{\phi}_{n}\left(x_{k} ; x\right) \tag{2.7}\\
\vdots & & \vdots & \vdots \\
\hat{\phi}_{1}\left(x_{k+n}\right) & \ldots & \hat{\phi}_{n}\left(x_{k+n}\right) & \hat{\phi}_{n}\left(x_{k+n} ; x\right)
\end{array}\right|}{\operatorname{det}\left\|\hat{\phi}_{j}\left(x_{i}\right)\right\|_{i=k, \ldots, k+n ; j=1, \ldots, n+1}}, \quad k=\ldots,-1,0,1, \ldots
$$

In defining $\hat{\phi}_{n+1}(x)$, we can choose $w_{n+2}(x) \equiv 1$.
Theorem 1.1 in Chapter 6 of [3] shows that the denominator of $M_{k}(x)$ is strictly positive. It is easy to show that the definition of $M_{k}(x)$ is independent of the choice of α; see [3], Chapter 10, Section 4. Therefore, $M_{k}(x)$ is welldefined.
$M_{k}(x)$ is a generalized nth divided difference of $\hat{\phi}_{n}(x ; s)$; in fact, in the polynomial spline case, it is a constant times the nth divided difference of $\phi_{n}(x ; s)=(x-s)_{+}^{n-1}$. Note that $M_{k}(x)$ is a spline associated with \mathscr{M}_{n}, with simple knots at $x=x_{k}, x_{k+1}, \ldots, x_{k+n}$.

Theorem 2.1. Let $S(x)$ be a spline on (a, b) associated with \mathscr{M}_{n}, with simple knots $\left\{x_{j}\right\}_{j=-\infty}^{\infty}$. Then $S(x)$ can be represented uniquely in the form

$$
\begin{equation*}
S(x)=\sum_{j=-\infty}^{\infty} c_{j} M_{j}(x) \tag{2.8}
\end{equation*}
$$

where the c_{j} are constants.
Proof. See [3], Chapter 10, Section 4.
The sum in (2.8) converges since, for any x, only a finite number of $M_{j}(x)$ are nonzero. Indeed, Lemma 4.1 in Chapter 10 of [3] shows that $M_{j}(x) \geqslant 0$ for all x, and $M_{j}(x)>0$ if, and only if, $x_{j}<x<x_{j+n}$.

Theorem 2.2. Let $S(x)$ be a spline on (a, b) associated with \mathscr{M}_{n}, with simple knots $\left\{x_{j}\right\}_{j=-\infty}^{\infty}$, admitting the representation (2.8). Then

$$
S^{-}(S(x) ;(a, b)) \leqslant S^{-}\left(\left\{c_{j}\right\}_{j=-\infty}^{\infty}\right)
$$

Proof. $M_{j}(x)$ is totally positive in j and x (see Theorem 4.1, Chapter 10, in [3]). Any totally positive kernel induces a variation-diminishing transformation (see Theorem 3.1, Chapter 5, in [3]).

Section 3. A Variation-Diminishing Generalized Spline with an Infinite Number of Knots

We wish to find a variation-diminishing generalized spline associated with \mathscr{M}_{n}, with simple knote $\left\{x_{j}\right\}_{j=-\infty}^{\infty}$, which preserves generalized linear functions. Theorems 2.1 and 2.2 provide two of the key results.

We can regard $\phi_{1}(x)$ and $\phi_{2}(x)$ (see (1.3)) as splines associated with \mathscr{M}_{n}. Therefore, according to Theorem 2.1, there are unique representations

$$
\phi_{k}(x)=\sum_{j=-\infty}^{\infty} a_{j}^{(k)} M_{j}(x), \quad k=1,2 ; a<x<b .
$$

It will be useful to define

$$
\begin{equation*}
N_{j}(x)=d_{j} M_{j}(x) \tag{3.1}
\end{equation*}
$$

where the d_{j} are positive constants, to be determined. In order to obtain the desired representation, we need to determine $\left\{d_{j}\right\}_{j=-\infty}^{\infty}$ and $\left\{z_{j}\right\}_{j=-\infty}^{\infty}$, $a<z_{j}<z_{j+1}<b$, such that

$$
\begin{equation*}
\frac{a_{j}^{(k)}}{d_{j}}=\phi_{k}\left(z_{j}\right), \quad k=1,2 ;-\infty<j<\infty ; \tag{3.2}
\end{equation*}
$$

and so we need

$$
\begin{equation*}
\frac{a_{j}^{(2)}}{a_{j}^{(1)}}=\frac{\phi_{2}\left(z_{j}\right)}{\phi_{1}\left(z_{j}\right)}, \quad-\infty<j<\infty . \tag{3.3}
\end{equation*}
$$

Since

$$
\phi_{2}(x) / \phi_{1}(x)=\int_{x}^{x} w_{2}(t) d t
$$

is strictly increasing, in order to establish that $\left\{z_{j}\right\}$ is increasing, we must show that

$$
\begin{equation*}
\left\{a_{j}^{(2)} / a_{j}^{(1)}\right\} \tag{3.4}
\end{equation*}
$$

is strictly increasing. Moreover, once $\left\{z_{j}\right\}$ is determined, we have

$$
d_{j}=a_{j}^{(1)} / \phi_{1}\left(z_{j}\right), \quad-\infty<j<\infty .
$$

Therefore, we also wish to prove that

$$
\begin{equation*}
a_{j}^{(1)}>0, \quad-\infty<j<\infty . \tag{3.5}
\end{equation*}
$$

In order to prove (3.4) and (3.5), we will establish the following more general result (the proof is given in Section 4).

Theorem 3.1. Let $\left\{M_{j}(x)\right\}_{j=-\infty}^{\infty}$ be the B-splines associated with \mathscr{M}_{n} and the simple knots $\left\{x_{j}\right\}_{j=-\infty}^{\infty}$, as defined in Section 2. Let

$$
\begin{equation*}
\phi_{k}(x)=\sum_{j=-\infty}^{\infty} a_{j}^{(k)} M_{j}(x), \quad k=1,2, \ldots, n ; a<x<b . \tag{3.6}
\end{equation*}
$$

Then

$$
\begin{equation*}
\operatorname{det}\left\|a_{J_{m}}^{\left.a_{l}\right)}\right\|_{i, m=1}^{k}>0, \quad k=1,2, \ldots, n ;-\infty<j_{1}<j_{2}<\ldots<j_{k}<\infty . \tag{3.7}
\end{equation*}
$$

Schoenberg stated this result without proof for the case of polynomial splines in [6].

Lemma 3.2. When (3.7) holds, we can choose the nodes z_{j} in the interval (a,b).

Proof. We will show that z_{j} can be determined satisfying (3.3) with $a<z_{j}$. The proof that $z_{j}<b$ is similar.

Obviously, we may assume $a>-\infty$. Suppose $a_{i}^{(2)} / a_{i}^{(1)}<\phi_{2}(a) / \phi_{1}(a)$ for some i. Then

$$
\begin{equation*}
\phi_{2}(x)=\sum_{j=i-n+1}^{i} \frac{a_{j}^{(2)}}{a_{j}^{(1)}} a_{j}^{(1)} M_{j}(x)<\frac{\phi_{2}(a)}{\phi_{1}(a)} \phi_{1}(x), \quad x_{i}<x<x_{i+1}, \tag{3.8}
\end{equation*}
$$

since $\phi_{1}(x)=\sum_{j=i-n+1}^{i} a_{j}^{(1)} M_{j}(x)$ when $x_{i}<x<x_{i+1}$ (recall that $M_{j}(x) \neq 0$ iff $\left.x_{j}<x<x_{j+n}\right), a_{J}^{(1)}>0$, and $a_{J}^{(2)} / a_{j}^{(1)}$ is strictly increasing. But (3.8) implies $\phi_{2}(x) / \phi_{1}(x)<\phi_{2}(a) / \phi_{1}(a)$, contradicting the fact that $\phi_{2}(x) / \phi_{1}(x)$ is strictly increasing.

Suppose that $f(x)$ is defined on (a, b). The generalized spline

$$
\begin{equation*}
S(x)=\sum_{j=-\infty}^{\infty} f\left(z_{j}\right) N_{j}(x) \tag{3.9}
\end{equation*}
$$

is well-defined, where $N_{j}(x)$ is defined by (3.1) and (3.2), and z_{j} is defined by (3.3).

Theorem 3.3. The generalized spline approximation $S(x)$ defined in (3.9) preserves functions of the form $A \phi_{1}(x)+B \phi_{2}(x)$ (A and B constants) and is variation-diminishing on (a, b).

Proof. We have defined the $N_{j}(x)$ and z_{j} in such a way that generalized linear functions are preserved. Since $a_{j}^{(1)} \phi_{1}\left(z_{j}\right)>0$, we see from Theorem 2.2 that

$$
S^{-}(S(x) ;(a, b)) \leqslant S^{-}\left(f\left(z_{j}\right) ;-\infty<j<\infty\right) .
$$

$\left\{z_{j}\right\}_{j=-\infty}^{\infty}$ is strictly increasing, so

$$
S^{-}\left(f\left(z_{j}\right) ;-\infty<j<\infty\right) \leqslant S^{-}(f(x) ;(a, b)) .
$$

Remark. $\left\{z_{j}\right\}$ and $\left\{N_{j}(x)\right\}$ depend on the choice of α used as an initial-value point for $\phi_{2}(x)$.

Section 4. Proof of Theorem 3.1

Theorem 3.1. Let $\left\{M_{j}(x)\right\}_{j_{--\infty}^{\infty}}^{\infty}$ be the basic spline functions associated with the operator \mathscr{M}_{n} and simple knots $\left\{x_{j}\right\}_{j=-\infty}^{\infty}$, as defined in Section 2. Suppose that

$$
\begin{equation*}
\phi_{k}(x)=\sum_{j=-\infty}^{\infty} a_{j}^{(k)} M_{j}(x), \quad k=1,2, \ldots, n ; a<x<b . \tag{4.1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\operatorname{det}\left\|a_{j_{m}}^{(l)}\right\|_{,, m=1}^{k}>0, \quad k=1,2, \ldots, n ;-\infty<j_{1}<j_{2}<\ldots<j_{k}<\infty . \tag{4.2}
\end{equation*}
$$

Remark. We must prove that the determinant of any $k \times k$ submatrix drawn from the first k rows of $\| a_{j}^{\left.()_{j}\right) \|_{i=1, j=-\infty}^{\infty}, \infty}$ is strictly positive. We will prove this result for submatrices composed of consecutive columns, and then use the Fekete theorem (Theorem 3.2 of Chapter 2 in [3]) to get (4.2). Since $w_{1}(x)$ is independent of the initial value point $x=\alpha$ for the fundamental solution set $\left\{\phi_{j}(x)\right\}_{j=1}^{n}\left(\left(L_{i-1} \phi_{j}\right)(\alpha)=w_{j}(\alpha) \delta_{i j}\right)$, it is easy to show that $\operatorname{det}\left\|\phi_{i}\left(x_{j}\right)\right\|_{i, j=1}^{p}$ is independent of the choice of α. Since $M_{k}(x)$ is also independent of the choice of α, we can assume that all B-splines are defined using the same initial value point.

Proof. We will need the following representation.
Lemma 4.1. For $j=1,2, \ldots, n$ and $x_{n}<s<x_{n+1}$,

$$
\begin{equation*}
\hat{\phi}_{n}\left(x_{n+j} ; s\right)=\sum_{i=1}^{j} c_{i}^{(j)} M_{i}(s) \tag{4.3}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{j}^{(j)}>0 \tag{4.4}
\end{equation*}
$$

Proof. When $x_{n}<s<x_{n+1}, \hat{\phi}_{n}\left(x_{j} ; s\right)=0$ for $j=1,2, \ldots, n$. Therefore

$$
M_{1}(s)=\operatorname{det}\left\|\hat{\phi}_{i}\left(x_{j}\right)\right\|_{i, j=1}^{n} \cdot \hat{\phi}_{n}\left(x_{n+1} ; s\right) / \operatorname{det}\left\|\hat{\phi}_{i}\left(x_{j}\right)\right\|_{i, j=1}^{n+1}
$$

Since $\operatorname{det}\left\|\hat{\phi}_{i}\left(x_{j}\right)\right\|_{i, j=1}^{n}>0$ (see [3], Chapter 6, Theorem 1.1), the lemma is true for $j=1$. The induction hypothesis is that (4.3) is true for $j=1,2, \ldots$, $k-1,2 \leqslant k \leqslant n$. Expanding $M_{k}(s)$, we get

$$
\begin{gathered}
M_{k}(s)=d_{k} \hat{\phi}_{n}\left(x_{n+k} ; s\right)+\sum_{i=1}^{k-1} d_{i} \hat{\phi}_{n}\left(x_{n+i} ; s\right), \\
d_{k}=\operatorname{det}\left\|\hat{\phi}_{i}\left(x_{k+j-1}\right)\right\|_{i, j=1}^{n} / \operatorname{det}\left\|\hat{\phi}_{i}\left(x_{k+j-1}\right)\right\|_{i, j=1}^{n+1} .
\end{gathered}
$$

Since $d_{k}>0$, it is clear using the induction hypothesis that (4.3) is valid for $j=k$.

In order to prove (4.2) for $n-k \times n-k$ submatrices composed of $n-k$ consecutive columns ($k=0,1, \ldots, n-1$), we consider the system of equations

$$
\begin{align*}
\phi_{i}\left(s_{j}\right) & =\sum_{\mu=1}^{n} a_{\mu}^{(i)} M_{\mu}\left(s_{j}\right), \tag{4.5}\\
\hat{\phi}_{n}\left(x_{n+l} ; s_{j}\right) & =\sum_{\mu=1}^{t} c_{\mu}^{(l)} M_{\mu}\left(s_{j}\right), \quad l=k, \ldots, n-k ;
\end{align*}
$$

for $j=1,2, \ldots, n$, where the s_{j} are chosen so that $x_{n}<s_{1}<s_{2}<\ldots<s_{n}<x_{n+1}$ (recall that $M_{k}(x) \neq 0$ iff $\left.x_{k}<x<x_{k+n}\right)$. When $k=0$, the equations for $\hat{\phi}_{n}\left(x_{n+l} ; s_{j}\right)$ are omitted. In matrix form, (4.5) can be written

$$
\left\|\begin{array}{c}
\left\|\phi_{i}\left(s_{j}\right)\right\|_{i, j=1}^{n-k, n} \tag{4.6}\\
\left\|\hat{\phi}_{n}\left(x_{n+l} ; s_{j}\right)\right\|_{i=k, j=1}^{1, n}
\end{array}\right\|=\left\|\begin{array}{c}
\left\|a_{\mu}^{(i)}\right\|_{i, \mu-1}^{n-k, n} \\
\left\|c_{\mu}^{(I)}\right\|_{l=k, \mu=1}^{i} 0_{k}, k, n-k
\end{array}\right\| \cdot\left\|M_{\mu}\left(s_{j}\right)\right\|_{\mu, j-1}^{n},
$$

where we define $c_{j}^{(i)}=0$ when $i<j$, and $0_{k},{ }_{n-k}$ is the $k \times n-k$ zero matrix. The determinant of the right-hand side of (4.6) is

$$
\begin{gather*}
\left.(-1)^{\substack{i=n-k+2}} \begin{array}{c}
n+1 \\
\sum \\
i=1 \\
k
\end{array} c_{i}^{(i)}\right) \cdot \operatorname{det}\left\|a_{k+m}^{(i)}\right\|_{i, m=1}^{n-k} \cdot \operatorname{det}\left\|M_{\mu}\left(s_{m}\right)\right\|_{\mu, m=1}^{n} \tag{4.7}\\
\stackrel{s}{=}(-1)^{i=n-k+2} \operatorname{det}\left\|a_{k+m}^{n+1}\right\|_{i, m=1}^{n-k},
\end{gather*}
$$

since $c_{i}^{(i)}>0$ and $\operatorname{det}\left\|M_{\mu}\left(s_{j}\right)\right\|_{\mu, j=1}^{n}>0$ (see [3], Chapter 10, Lemma 4.2); the symbol $c \stackrel{s}{=} d$ means that $c d>0$.

In order to evaluate the determinant of the matrix on the left side of (4.6), we need the following representation, which is the non-self adjoint version of a representation formula in [2].

Lemma 4.2.

$$
\begin{equation*}
\hat{\phi}_{n}(x ; s)=\sum_{j=1}^{n}(-1)^{j-1} \hat{\phi}_{n+1-j}(x) \phi_{j}(s), \quad s<x . \tag{4.8}
\end{equation*}
$$

Proof. It is easy to see that $\mathscr{M}_{n}^{(s)} \hat{\phi}_{n}(x ; s) \equiv 0$ for $s<x$ (the differentiations are to be performed with respect to s). Therefore, we can write

$$
\hat{\phi}_{n}(x ; s)=\sum_{j=1}^{n} c_{j}(x) \phi_{j}(s)
$$

for $s<x$. In order to determine the coefficient of $\phi_{j}(s)$, operate on $\hat{\phi}_{n}(x ; s)$ with $L_{j-1}^{(s)}$ (defined in (1.2)) and set $s=\alpha$. That (4.8) holds when $s<\alpha$, follows from the unicity of the initial-value problem for ordinary differential equations.

Let

$$
\begin{equation*}
a_{j}(x)=(-1)^{j-1} \hat{\phi}_{n+1-j}(x) . \tag{4.9}
\end{equation*}
$$

By using the representation (4.8), the determinant of the left side of (4.6) can be written as

$$
\left|\begin{array}{l}
\left\|\phi_{i}\left(s_{j}\right)\right\|_{i, j=1}^{n-k, n} \tag{4.10}\\
\left\|b_{l}\left(s_{j}\right)\right\|_{l=k, j=1}^{1, n}
\end{array}\right|,
$$

where $b_{l}(s)=\sum_{t=1}^{n} a_{t}\left(x_{n+l}\right) \phi_{t}(s)$. The matrix of (4.10) can be written in the form

$$
\left\|\begin{array}{lr}
I_{n-k} & 0_{k} \\
\left\|a_{j}\left(x_{n+1}\right)\right\|_{l=k, j=1}^{1, n}
\end{array}\right\| \cdot\left\|\phi_{i}\left(s_{j}\right)\right\|_{i, j=1}^{n},
$$

where I_{n-k} is the $n-k \times n-k$ identity matrix. Therefore, the determinant (4.10) is equal to

$$
\begin{equation*}
\operatorname{det}\left\|a_{j}\left(x_{n+1}\right)\right\|_{i=k, j=n-k+1}^{1, n} \cdot \operatorname{det}\left\|\phi_{i}\left(s_{j}\right)\right\|_{i, j=1}^{n} . \tag{4.11}
\end{equation*}
$$

According to the Remark above, we can assume that the initial value point α satisfies $\alpha<s_{1}$. Then $\operatorname{det}\left\|\phi_{i}\left(s_{j}\right)\right\|_{i, j=1}^{n}>0$ by Theorem 1.1, Chapter 6 of [3]. According to (4.9), the first determinant in (4.11) is

$$
\begin{aligned}
\operatorname{det}\left\|(-1)^{n-j} \hat{\phi}_{j}\left(x_{n+l}\right)\right\|_{i, j=k}^{1} & =(-1)^{\substack{n-1 \\
\sum_{n-k}^{j}}} \operatorname{det}\left\|\hat{\phi}_{i}\left(x_{n+l}\right)\right\|_{l, j=1}^{k} \\
& \stackrel{s}{=}(-1)^{j=n-k} j
\end{aligned}
$$

Comparing this with (4.7), we see that $\operatorname{det}\left\|a_{j}^{(i)}\right\|_{i=1, j=k+1}^{n-k, n}>0$. Using a suitable translation, the same proof shows that

$$
\begin{equation*}
\operatorname{det}\left\|a_{j}^{(i)}\right\|_{i=1, j=m}^{k, m+k-1}>0, \quad k=1, \ldots, n ;-\infty<m<\infty \tag{4.12}
\end{equation*}
$$

To finish the proof, we remove the restriction that the columns be consecutive, by applying the Fekete theorem ([3], Chapter 2, Theorem 3.2) successively to (4.12), with $k=1, k=2, \ldots, k=n$.

Section 5. A Variation-Diminishing Spline for a Finite Interval with Finitely-Many Knots

As mentioned in Section 1, Schoenberg [6] pointed out that the key to finding a variation-diminishing polynomial spline with finitely many knots in (a, b), which also preserves generalized linear functions on $[a, b]$, is the introduction of knots of multiplicity n at $x=a$ and $x=b$. In this section we will define a generalized spline with these properties.

Definition 5.1. Let $\left\{x_{j}\right\}$ satisfy $x_{j}<x_{j+1} . S(x)$ is a generalized spline with knots $\left\{x_{j}\right\}$, associated with the differential expression \mathscr{M}_{n} (see (1.1)), if $\left(\mathscr{M}_{n} S\right)(x)=0, x \neq x_{j} . x_{j}$ is called a knot of multiplicity μ if

$$
S(x) \in C^{n-1-\mu}\left[x_{j}-\epsilon, x_{j}+\epsilon\right]
$$

for small positive ϵ.
A knot of multiplicity one is a simple knot, and $S(x)$ has a jump discontinuity at a knot of multiplicity n. See [3], Chapter 10 , for more details.

We will want to consider continuous functions defined on a finite interval [a,b] and approximating splines with m simple knots $\left\{x_{j}\right\}_{j=1}^{m}$ in (a, b), $a<x_{1}<x_{2}<\ldots<x_{m}<b$. We introduce knots of multiplicity n at $x=a$ and at $x=b$, so $S(x)$ has a jump discontinuity at these two points. We will assume that

$$
\begin{equation*}
S(x)=0, \quad x<a ; x>b \tag{5.1}
\end{equation*}
$$

Set $x_{0}=a, x_{m+1}=b$. Let $\left\{\hat{\phi}_{j}(x)\right\}_{j=1}^{n}$ be a basic set of solutions for $\hat{\mathscr{M}}_{n} u=0$, as in (2.3), with initial values at $x=a:\left(\hat{L}_{i-1} \hat{\phi}_{j}\right)(a)=w_{n+2-j}(a) \delta_{i j}$.

The definition of the basic spline functions in Section 2 has to be modified for $k=1,2, \ldots, n-1$ and $k=m+2, m+3, \ldots, m+n$, as for these values $M_{k}(x)$ is a spline with multiple knots. Recall the definitions in (2.5) and (2.6). We define

$$
\begin{align*}
& M_{k}(x)=c_{k}\left|\begin{array}{cccccc}
\hat{\phi}_{1}(a) & \hat{\phi}_{2}(a) & \ldots & \hat{\phi}_{n+1-k}(a) & \ldots & \hat{\phi}_{n}(a) \\
0 & \hat{\phi}_{2},{ }_{2}(a) & \ldots & \hat{\phi}_{2, n+1-k}(a) & \ldots & \hat{\phi}_{n}(a ; x) \\
\vdots & \vdots & \ddots & \vdots & & \vdots \\
0 & 0 & \ldots & \hat{\phi}_{n+1-k},{ }_{n}(a) & \hat{\phi}_{2},{ }_{n}(a ; x) \\
\hat{\phi}_{1}\left(x_{1}\right) & \hat{\phi}_{2}\left(x_{1}\right) & \ldots & \hat{\phi}_{n+1-k}\left(x_{1}\right) & \ldots & \vdots \\
\vdots & \vdots & & \vdots & & \hat{\phi}_{n+1-k}(a) \\
\hat{\phi}_{n+1-k},{ }_{n}(a ; x) \\
\hat{\phi}_{1}\left(x_{k}\right) & \hat{\phi}_{2}\left(x_{k}\right) & \ldots & \hat{\phi}_{n+1-k}\left(x_{k}\right) & \ldots \hat{\phi}_{n}\left(x_{k}\right) & \hat{\phi}_{n}\left(x_{1} ; a\right) \\
\end{array}\right|, \\
& k=1,2, \ldots, n-1 \text {, } \tag{5.2}\\
& M_{k}(x)=c_{k}\left|\begin{array}{ccccccc}
\hat{\phi}_{1}\left(x_{k-n}\right) & \hat{\phi}_{2}\left(x_{k-n}\right) & \ldots & \hat{\phi}_{k-m}\left(x_{k-n}\right) & \ldots & \hat{\phi}_{n}\left(x_{k-n}\right) & \hat{\phi}_{n}\left(x_{k-n} ; x\right) \\
\vdots & \vdots & & \vdots & & \vdots & \vdots \\
\hat{\phi}_{1}\left(x_{m}\right) & \hat{\phi}_{2}\left(x_{m}\right) & \ldots & \hat{\phi}_{k-m}\left(x_{m}\right) & \ldots & \hat{\phi}_{n}\left(x_{m}\right) & \hat{\phi}_{n}\left(x_{m} ; x\right) \\
\hat{\phi}_{1}(b) & \hat{\phi}_{2}(b) & \ldots & \hat{\phi}_{k-m}(b) & \ldots & \hat{\phi}_{n}(b) & \hat{\phi}_{n}(b ; x) \\
0 & \hat{\phi}_{2}, 2(b) & \ldots & \hat{\phi}_{2, k-m}(b) & \ldots & \hat{\phi}_{2, n}(b) & \hat{\phi}_{2}, n(b ; x) \\
\vdots & \vdots & \ddots & \vdots & & \vdots & \vdots \\
0 & 0 & \ldots & \hat{\phi}_{k-m, k-m}(b) & \ldots & \hat{\phi}_{k-m, n}(b) & \hat{\phi}_{k-m, n}(b ; x)
\end{array}\right|, \\
& k=m+2, m+3, \ldots, m+n, \tag{5.3}
\end{align*}
$$

where c_{k} is the reciprocal of the given determinant with the last column replaced by

$$
\left(\hat{\phi}_{n+1}(a), \hat{\phi}_{2, n+1}(a), \ldots, \hat{\phi}_{n+1-k},{ }_{n+1}(a), \hat{\phi}_{n+1}\left(x_{1}\right), \ldots, \hat{\phi}_{n+1}\left(x_{k}\right)\right)
$$

in (5.2), and in (5.3) by

$$
\left(\hat{\phi}_{n+1}\left(x_{k-n}\right), \ldots, \hat{\phi}_{n+1}\left(x_{m}\right), \hat{\phi}_{n+1}(b), \hat{\phi}_{2, n+1}(b), \ldots, \hat{\phi}_{k-m, n+1}(b)\right) .
$$

For the remaining values of $k, M_{k}(x)$ is defined as is $M_{k-n}(x)$ in Section 2. As in Section 2, $c_{k}>0$. (When $m+2-n<0$, modifications as in (5.2) and (5.3) must be made, in both the upper and lower parts of the determinants defining some of the basic spline functions; see [4] for details.)
For these basic spline functions with multiple knots, results analogous to those in Section 2 are valid.

Theorem 5.1. Let $S(x)$ be a spline associated with the differential expression \mathscr{H}_{n}, with knots $\left\{x_{j}\right\}_{j=0}^{m+1}, x_{j}<x_{j+1}$, where x_{j} is a knot of multiplicity μ_{j}, $1 \leqslant \mu_{j} \leqslant n$. If $\mu=\sum_{j=0}^{m+1} \mu_{j} \geqslant n+1$, and $S(x)=0$ for $x \notin\left[x_{0}, x_{m+1}\right]$, then $S(x)$ can be represented uniquely in the form

$$
\begin{equation*}
S(x)=\sum_{j=1}^{\mu-n} c_{j} M_{j}(x), \tag{5.4}
\end{equation*}
$$

where $\left\{M_{J}(x)\right\}$ is the set of basic spline functions for the given knots with the given multiplicities.

Proof. This theorem involves a straightforward generalization of Theorem 4.2, Chapter 10, of [3]; it was stated for the polynomial spline case in [1].

Therefore, there are unique representations

$$
\begin{equation*}
\phi_{k}(x)=\sum_{j=1}^{m+n} a_{j}^{(k)} M_{j}(x), \quad a \leqslant x \leqslant b ; k=1,2, \ldots, n \tag{5.5}
\end{equation*}
$$

where the $\phi_{k}(x)$ are as defined in (1.3) for $a \leqslant x \leqslant b$ and zero outside [a, b], and the $M_{j}(x)$ are the B-splines associated with \mathscr{M}_{n} and the knots $\left\{x_{j}\right\}_{j=0}^{m+1}$, as defined above. As in Section 3 for the case of an infinite number of knots, define

$$
\begin{equation*}
N_{j}(x)=d_{j} M_{j}(x), \quad j=1,2, \ldots, m+n \tag{5.6}
\end{equation*}
$$

where the d_{j} are positive constants, to be determined. In order to obtain the desired representation, we need to determine $\left\{d_{j}\right\}_{j=1}^{m+n}$ and $\left\{z_{j}\right\}_{j=1}^{m+n}$, $a \leqslant z_{j}<z_{j+1} \leqslant b$, such that

$$
a_{j}^{(k)} / d_{j}=\phi_{k}\left(z_{j}\right), \quad k=1,2 ; j=1,2, \ldots, m+n ;
$$

so we need

$$
\begin{equation*}
a_{j}^{(2)} / a_{j}^{(1)}=\phi_{2}\left(z_{j}\right) / \phi_{1}\left(z_{j}\right), \quad j=1,2, \ldots, m+n . \tag{5.7}
\end{equation*}
$$

As in Section 3, it is sufficient to show that $a_{j}^{(1)}>0, a_{j}^{(2)} / a_{j}^{(1)}$ is strictly increasing in j, and $z_{1}, z_{m+n} \in[a, b]$.

Theorem 5.2. Let $\left\{M_{j}(x)\right\}_{j=1}^{m+n}$ be the B-splines associated with \mathscr{M}_{n} and the knots $\left\{x_{j}\right\}_{j=0}^{m+1}$, as defined above. With $a_{j}^{(k)}$ defined as in (5.5),

$$
\operatorname{det}\left\|a_{j_{m}}^{(l)}\right\|_{l, m=1}^{k}>0 ; \quad k=1,2, \ldots, n ; 1 \leqslant j_{1}<j_{2}<\ldots<j_{k} \leqslant m+n .
$$

Schoenberg stated this result for polynomial splines in [6], but the proof has not been published. One shows that

$$
\begin{equation*}
\operatorname{det}\left\|a_{j+r-1}^{(l)}\right\|_{l, j=1}^{k}>0 \quad \text { for } k=1,2, \ldots, n ; r=1,2, \ldots, n+m-k+1 \tag{5.8}
\end{equation*}
$$

and then uses the Fekete theorem. However, if $1 \leqslant k<n$ and $1 \leqslant r \leqslant n-k$, there is no $n \times n$ submatrix with the matrix in (5.8) in the upper-right corner. We can get our hands on the matrix in (5.8) by considering the system of equations

$$
\begin{aligned}
\phi_{i}(s) & =\sum_{j=1}^{n} a_{j}^{(i)} M_{j}(s), & & i=1,2, \ldots, p, \\
\hat{\phi}_{n}\left(x_{n+l} ; s\right) & =\sum_{j=1}^{l} c_{j}^{(l)} M_{j}(s), & & l=q, q-1, \ldots, 1, \\
M_{n-t+1}(s) & =M_{n-t+1}(s), & & t=r, r-1, \ldots, 1,
\end{aligned}
$$

where $a=x_{0}<x<x_{1}$, and p, q, and r are non-negative integers such that $p+q+r=n, p \geqslant 1$. A few technical variations must be made in the method used to prove Theorem 3.1; see [4] for details.

Lemma 5.3. We can define $\left\{z_{j}\right\}_{j=1}^{m+n}$ as in (5.7), with $z_{1}=a, z_{m+n}=b$.
Proof. We can write $M_{k}(x)=\lim _{t \downarrow a} M_{k}(x ; t), 1 \leqslant k \leqslant n$, where $M_{k}(x ; t)$ is defined similarly to $M_{k}(x)$, but with a replaced by t in the numerator. Since $M_{k}(x ; t) \geqslant 0$, with strict inequality if and only if $t<x<x_{k}$ (see Theorem 1.1, Chapter 10, of [3]), $M_{k}(x)=0$ unless $a<x<x_{k} . M_{k}(x)$ has a knot of multiplicity $n+1-k$ at $x=a$ for $1 \leqslant k \leqslant n$. Therefore, $M_{k}(x)$ is continuous at $x=a$ for $2 \leqslant k \leqslant n$, so $M_{k}(x) \rightarrow 0$ as $x \downarrow a$ for these values of k. From the definition, it is clear that $M_{1}(x) \rightarrow c \phi_{n}\left(x_{1}\right)$ as $x \downarrow a, \mathrm{c} \neq 0$. Therefore

$$
0=\lim _{x \downarrow a} \phi_{2}(x)=a_{1}^{(2)} c \hat{\phi}_{n}\left(x_{1}\right),
$$

so we must have $a_{1}^{(2)}=0$. Thus, if we define z_{j} by (5.7), $z_{1}=a$.
It is easy to see that $M_{j}(x) \rightarrow 0$ as $x \uparrow b$ for $j=1,2, \ldots, m+n-1$. Therefore,

$$
\begin{aligned}
& \phi_{2}(b)=\lim _{x \uparrow b} \frac{a_{m+n}^{(2)}}{a_{m+n}^{(1)}} a_{m+n}^{(1)} M_{m+n}(x), \\
& \phi_{1}(b)=\lim _{x \uparrow b} a_{m+n}^{(1)} M_{m+n}(x) .
\end{aligned}
$$

From these equations we see that (5.7) is valid for $j=m+n$ if we choose $z_{m+n}=b$.

Let $\left\{z_{j}\right\}_{j=1}^{m+n}$ be defined by (5.7). We have shown that $z_{j} \in[a, b]$, and the z_{j} are strictly increasing. Define

$$
N_{j}(x)=a_{j}^{(1)} M_{j}(x) / \phi_{1}\left(z_{j}\right), \quad j=1,2, \ldots, m+n .
$$

We consider the generalized spline approximation

$$
\begin{equation*}
S(x)=\sum_{j=1}^{m+n} f\left(z_{j}\right) N_{j}(x), \quad a \leqslant x \leqslant b . \tag{5.9}
\end{equation*}
$$

Theorem 5.4. The generalized spline approximation method defined in (5.9) is variation-diminishing on $[a, b]$ and preserves functions of the form

$$
A \phi_{1}(x)+B \phi_{2}(x) .
$$

Proof. The $N_{j}(x)$ and z_{j} have been chosen so that generalized linear functions are preserved. It can be shown, as in [3], Chapter 10, that $M_{j}(x)$ is totally
positive in j and x, therefore $N_{j}(x)$ is also so. By the argument used in the proof of Theorem 3.3, this implies that the transformation in (5.9) is variationdiminishing.

References

1. H. B. Curry and I. J. Schoenberg, On Pólya frequency functions IV: the fundamental spline functions and their limits. J. D'Analyse Math. 17 (1966), 71-107.
2. S. Karlin and Z. Ziegler, Chebyshevian spline functions. SIAM J. Numer. Anal. 3 (1966), 514-543.
3. S. Karlin, "Total Positivity", vol. 1. Stanford University Press, Stanford, California, 1968.
4. J. Karon, The sign-regularity properties of a class of Green's functions for ordinary differential equations and some related results. Dissertation, Stanford University, 1968.
5. M. Marsden and I. J. Schoenberg, On variation-diminishing spline approximation methods. Math. 8 (31), 1 (1966), 61-82.
6. I. J. Schoenberg, On spline functions. In "Inequalities" (ed. by O. Shisha). Academic Press, New York, 1967.

[^0]: ${ }^{1}$ This research was supported in part under Contract N0014-67-A-0112-0015 at Stanford University, Stanford, California.

