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SECTION 1. INTRODUCTION

In this paper we will define a generalized-spline approximation method
which is variation-diminishing and preserves functions which are linear in a
generalized sense. (Variation-diminishing transformations are defined in
Definition 1.3.) In Section 3 we will define an approximating spline with an
infinite number of knots. The modifications needed to prove similar results
for splines defined on a finite interval with a finite number of knots are in
dicated in Section 5. Our results generalize the work of Schoenberg reported
in [6], where he stated without proofs corresponding results for the special
case of polynomial splines.

Our generalized splines are piecewise solutions of vIInu = 0, where vIIn is
a differential expression of the form

(
I did I dl)(vii U)(X) = ------- "'- - u(x)

n wn+1(x)dxwix)dxwn_](x) dxw1(x)

with wAx) > °and wAx) of continuity class cn. It will be useful to define

(Lou)(x) = u(x),

(
d I did I )

(Lju)(x)= d--()-d -(-)"'-d-() u(x),xWj X xWj_1X XWI X

A basic set of solutions for vIInu = 0 is

rpl(X) = w1(x),

rp2(X) = w](x) J: W2(t2)dt2,

rpAx) = w,(x) J: W2(t2) dt2 J:2 W3(t3) dt3·· .1:J
-

1
wAtj) dtj, j = 3,4, ... ,n

(1.3)

where IX is a fixed point. Actually, by suitable transformations of the dependent
and independent variables, we could assume that rpl(X) == 1 and rpix) = x - IX.

Note that (L1-, rpj)(lX) = O/jWJCIX), i,j = I, 2, ... , n.

1 This research was supported in part under Contract NOO14-67-A-0112-0015 at Stanford
University, Stanford, California.
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256 KARLIN AND KARON

DEFINITION 1.1. S(x) is a generalized spline on (a,b) associated with Jim
with simple knots {Xj}, if (JlnS)(x) = 0 for x E (a,b), xl' Xj> and
S(x) E Cn- 2(a,b).

The following notation is useful.

DEFINITION 1.2. Letf(x) be defined on a subset X of the real line. S-(j, X)
is the number of sign changes of f(x) as x traverses X, where zeros of f(x)
are not counted as changes in sign (see [3], page 20).

DEFINITION 1.3. A transformation T which maps a family of functions .fi:"
defined on X into functions defined on XI' is called variation diminishing if

S-(Tf; XI) .;;; S-(f; X)

for all functions fin .fi:".
Variation-diminishing transformations are investigated extensively in [3].
Using these definitions, we can state our basic results.

THEOREM 3.3. Let {xJj_-oosatisfy: Xj < xj+dorallj; lim x j = a; limxj = b
j->- -00 j->-oo

(we allow a = -00, b = 00). Letfbe defined on (a,b) and continuous. We can find
splines Nix), -00 <j < 00, associated with Jim with simple knots {Xj}j~-oo'and
points Zj, -00 <j < 00, a < Zj < Zj+1 < b, such that

00

1>i(X) = L 1>t<zj) Nix),
j=-oo

i= 1,2;a < x<b, (1.4)

S- C~oof(Zj)Nix);(a,b»)';;;S-(f;(a,b». (1.5)

The Nix) and Zj are independent off(x). (The convergence OfL';'.._r,,!(Zj) Nix)
will hold, since,for each x, only afinite number of terms of the sum are distinct
from zero.)

THEOREM 5.4. Let -00 < a < XI < X2 < ... < Xm< b < 00. Let f be a con
tinuousfunction defined in [a,b]. We can find splines Nix),j = 1,2, ..., m + n,
associated with Jlnwith simple {Xj}j~ I and knots ofmultiplicity n at x = a (see
Definition 5.1), and points Zj, a = ZI < Z2 < ... < Zm+n = b, such that

i= 1,2;a.;;;x.;;; b,

S- C#>(Zj) Nix); [a,bl)';;; S-(f; [a,b]).

The Nix) and Zj are independent off(x).
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(2.1)

The fact that the spline approximations are variation-diminishing and
preserve generalized linear functions implies that they preserve generalized
convexity properties, in the following sense: with S(x;f) = "Lj(zj)N/x),

S-(S(x;j) - at if11(x) - a2 if12(X); (a, b)) = S-(S(x;f - a1if11 - a2 if12); (a, b))

< S-U - al if11 - a2if12;(a,b)).

Thus, if j is a generalized convex or concave function on (a, b), so is the
approximating spline S(x;f). (Generalized convexity is discussed in [3],
Chapter 6.)

Schoenberg announced the analogous results for polynomial splines in [6],
Le., all wix) are constant, so vltn= dnjdxn and if1ix) = (x - ex)j. He was able
to evaluate the nodes Zj and splines Nix) in some special cases and obtain
convergence estimates.

SECTION 2. BACKGROUND FOR SPLINES WITH SIMPLE KNOTS

Generalized splines on (a, b) associated with the differential expression vltn
are defined in Definition 1.1. Our results are based on a representation formula
for such splines as linear combinations of certain generalized basic spline
functions which were introduced by Karlin in [3] in the study of self-adjoint
differential expressions ofthe form (1.1). By modifying that definition, we can
consider non-self-adjoint differential expressions.

Let Jlnbe the formal differential operator adjoint to vltn:

A (Idldl d 1)
vltnu(x) = (-I)n W1(x) dxwix)dx W3(X) .•. dx Wn+1(X) u(x).

Analogously to (1.2) and (1.3), we define

(10 u) (x) = u(x),

(
d 1 did 1 )(l j u)(x)= - ...--- u(x),

dXWn+2_/x)dxwn+3_/x) dXWn+I(X)

and
~l(X) = Wn+l(X),

~2(X) = Wn+I(X) f: wn(tn)dt.,

. fX fhifiix) = Wn+l(x) a wn(tn)dtn a wn-1(tn-l)dtn- I ··.

i= 1,2, ... ,n

(2.2)

where ex is a fixed point.

j= 3,4, ...,n, (2.3)
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{$iX)}j~1 is a basic set of solutions for .Anu = O. The fundamental solution

associated with .4n is

r0 x<s

~ I IX Ito III,Pn(x;s) =1W1(S)Wn+1(x) s wn(tn)dtn s wn- 1(tn-l)dtn- 1··· s wit2)dt2,

S<X.

(2.4)

For fixed x, it is a generalized spline associated with .An, with a simple knot at
S = x. It is useful to define

s< x, j= 2,3, .. .,n,

j= 2,3, .. .,n;

(2.5)

(2.6)

the differentiations in (2.5) are to be made with respect to x.
We will assume that we deal with splines with simple knots {Xj}J~-eo, where

a = lim Xj, b = lim Xi> and Xj < Xj+l'
j-+-OO j--:,.oo

DEFINITION 2.1. The basic spline functions (B-splines) for the differential
expression Jlnand knots {Xj}J=-eo, are

$1 (Xk) ¢n(Xk) ¢n(Xk; X) I

¢.(Xk+n) ¢n(Xk+n) ¢n(Xk~n;X) I
det II¢/xi)lll=k, .... k+n;j~I, .... n+l

k= ...,-I,O,I, ....

(2.7)

In defining ¢n+l(X), we can choose wn+2(x) == 1.
Theorem 1.1 in Chapter 6 of [3] shows that the denominator of Mk(x) is

strictly positive. It is easy to show that the definition of Mk(x) is independent
of the choice of a; see [3], Chapter 10, Section 4. Therefore, Mk(x) is well
defined.

Mk(x) is a generalized nth divided difference of $n(x;s); in fact, in the
polynomial spline case, it is a constant times the nth divided difference of
c/>n(x;s) = (x - s)~-·. Note that Mk(x) is a spline associated with Jln, with
simple knots at x = Xk, Xk+1, ..., Xk+n'
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THEOREM 2.1. Let Sex) be a spline on (a, b) associated with Jim with simple
knots {Xj}j~_w Then Sex) can be represented uniquely in theform

where the Cj are constants.

00

Sex) = 2: Ci Mix),
j=-co

(2.8)

Proof. See [3], Chapter 10, Section 4.
The sum in (2.8) converges since, for any x, only a finite number of Mix)

are nonzero. Indeed, Lemma 4.1 in Chapter 10 of [3] shows that Mix);> 0
for all x, and Mix) > 0 if, and only if, x j < x < xj+n'

THEOREM 2.2. Let Sex) be a spline on (a,b) associated with Jim with simple
knots {Xj}j~-oo, admitting the representation (2.8). Then

S-(S(x); (a, b)) <; S-({cJj~-oo)'

Proof. Mix) is totally positive in j and x (see Theorem 4.1, Chapter 10, in
[3]). Any totally positive kernel induces a variation-diminishing transforma
tion (see Theorem 3.1, Chapter 5, in [3]).

SECTION 3. A VARIATION-DIMINISHING GENERALIZED SPLINE

WITH AN INFINITE NUMBER OF KNOTS

We wish to find a variation-diminishing generalized spline associated with
Jim with simple knote {Xj}j~-oo, which preserves generalized linear functions.
Theorems 2.1 and 2.2 provide two of the key results.

We can regard ~l(X) and ~2(X) (see (1.3)) as splines associated with Jln•

Therefore, according to Theorem 2.1, there are unique representations

00

~k(X) = 2: aSk) Mix),
j~-oo

It will be useful to define

k= 1,2;a<x<b.

(3.1)

where the dj are positive constants, to be determined. In order to obtain the
desired representation, we need to determine {dj}j~_oo and {Zj}j~_oo,

a < Zj < Zj+l < b, such that
a(k)-t = ~k(Zj), k = 1,2; -00 <j < 00; (3.2)

j

and so we need

18

aS2
) ~izj)

a)ll ~l(Zj)'
-00 <j < 00. (3.3)
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4>ix)!4>I(x) = f: w2(t)dt

is strictly increasing, in order to establish that {Zj} is increasing, we must
show that

{aS2)laS!)}

is strictly increasing. Moreover, once {Zj} is determined, we have

(3.4)

dj = a)l)!4>I(Zj),

Therefore, we also wish to prove that

as!) > 0,

-'Xi <j < 'Xi.

-'Xi <j < 'Xi. (3.5)

In order to prove (3.4) and (3.5), we will establish the following more
general result (the proof is given in Section 4).

THEOREM 3.1. Let {Mix)}J=-oo be the B-splines associated with ..Itnand the
simple knots {Xj}J=-oo, as defined in Section 2. Let

Then

00

4>k(X) = L aSk) Mix),
j=-oo

k= 1,2, ...,n;a<x<b. (3.6)

det IlaS~II~.m=1 > 0, k = 1,2, .. .,n;-oo <jl <h < ... <A < 'Xi,

(3.7)

Schoenberg stated this result without proof for the case of polynomial
splines in [6].

LEMMA 3.2. When (3.7) holds, we can choose the nodes Zj in the interval
(a, b).

Proof We will show that Zj can be determined satisfying (3.3) with a < Zj.
The proof that Zj < b is similar.

Obviously, we may assume a> -00. Suppose a~2)lap) < 4>ia)/4>I(a) for
some i. Then

,/.. ()_* a5
2
) (I) M () 4>2(a) ,/.. ( )

n X -j~6+1aSl)aj jX <1>I(a)'t'IX, XI<X<Xl+1> (3.8)

since 4>1(X) = L5~I-n+l aS 1
) Mix) when Xl < X < Xi+1 (recall that Mix) =P 0 iff

Xj < x < xj+n), ajl) > 0, and aS2)lajl) is strictly increasing. But (3.8) implies
4>ix)!4>I(x) < 4>ia)!4>l(a), contradicting the fact that 4>2(X)!c/>I(X) is strictly
increasing.
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Suppose thatf(x) is defined on (a,b). The generalized spline

CD

Sex) = L f(Zj) Nix)

261

(3.9)

is well-defined, where Nj(x) is defined by (3.1) and (3.2), and Zj is defined by
(3.3).

THEOREM 3.3. The generalized spline approximation Sex) defined in (3.9)
preserves functions of the form Aep1(X) + Bepix) (A and B constants) and is
variation-diminishing on (a, b).

Proof We have defined the Nix) and Zj in such a way that generalized
linear functions are preserved. Since aj I) 1>1 (Zj) > 0, we see from Theorem 2.2
that

S-(S(x); (a, b)) < S-(f(Zj); -r:JJ <j < r:JJ).

{Zj}j__oo is strictly increasing, so

Remark. {Zj} and {Nix)} depend on the choice of 0( used as an initial-value
point for ep2(X).

SECTION 4. PROOF OF THEOREM 3.1

THEOREM 3.1. Let {Mix)}j~-oo be the basic spline functions associated with
the operator Jln and simple knots {Xj}j~-oo' as defined in Section 2. Suppose
that

Then

00
(Mx) = L ajk) Mix),

j~-oo

k= 1,2, ...,n;a<x<b. (4.1)

det Ilaj~lltm~I > 0, k= 1,2,oo.,n;-r:JJ<jl <il< ... <jk<r:JJ. (4.2)

Remark. We must prove that the determinant of any k x k submatrix
drawn from the first k rows of Ilajl)117':'('L~_00 is strictly positive. We will prove
this result for submatrices composed of consecutive columns, and then use
the Fekete theorem (Theorem 3.2 of Chapter 2 in [3]) to get (4.2). Since w1(x)
is independent of the initial value point x = 0( for the fundamental solution
set {epix)}j~I«Lt-1 epj)(O() = wiO()oij), it is easy to show that detllept(xj)llf,H
is independent of the choice of 0(. Since Mk(x) is also independent of the
choice of 0(, we can assume that all B-splines are defined using the same
initial value point.
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Proof. We will need the following representation.

LEMMA 4.1. For j = 1, 2, ... , nand Xn< S < Xn+I'

(4.3)

where
cjj

) > 0. (4.4)

Proof. When Xn < S < Xn+1, ¢.(Xj;s) = °for j = 1,2, ... , n. Therefore

M1(s) = det II¢i(Xj)IIi',jd . ¢n(Xn+l; s)/det II¢i(XJ)IIi'j~I'

Since detll¢i(xJ)IIi',J~1 > °(see [3], Chapter 6, Theorem I.1), the lemma is
true for j = 1. The induction hypothesis is that (4.3) is true for j = 1, 2, .00'
k - 1,2 < k < n. Expanding Mk(s), we get

dk = det II¢i(Xk+j-I)lli',j~ ddet II¢i(Xk+j-I)lli'j~ I'

Since dk > 0, it is clear using the induction hypothesis that (4.3) is valid for
j=k.

In order to prove (4.2) for n - k x n - k submatrices composed of n - k
consecutive columns (k = 0, 1, ... , n - 1), we consider the system of equations

(4.5)

i = 1, 2, ... ,n - k;

1=k,k-1, ... ,1,

n

rpi(Sj) = L a~) MJ1.(sJ)'
J1.~1

1
A • _" (I) (¢.(xn+l,Sj)- L. cJ1. MJ1.sJ,

J1.~1

for j = 1, 2, ... , n, where the Sj are chosen so that Xn< SI < S2 < ... < Sn < Xn+I

(recall that Mk(x) #- ° iff Xk < x < xk+n). When k = 0, the equations for
¢n(Xn+I;Sj) are omitted. In matrix form, (4.5) can be written

(4.6)
II

11 ,I.·(s·)lln-~n II II 11a<i)II~-k.n II,/-" J I,J-I J1. ',J1.-1
= 'IIM (s ·)lln

A • I,n (I) I i k J1. J J1..j~ b
II¢n(xn+l> Sj)II'~k,j_1 IlcJ1. III~k,J1.~ 1 0k, n-k \

where we define cji) = °when i <j, and Okln-k is the k x n - k zero matrix.
The determinant of the right-hand side of (4.6) is

nt i( k )
(_1)i~n-k+2 IT c(i) . det Ila(i) Iln-k_ .det 11M (s )lln _i k+m i,m_I J1. m J1.,m-1

i~1

(4.7)
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since dl) > 0 and det IIMlls.i)II~.j~I > 0 (see [3], Chapter 10, Lemma 4.2); the

symbol c ~ d means that cd> O.
In order to evaluate the determinant of the matrix on the left side of (4.6),

we need the following representation, which is the non-self adjoint version
of a representation formula in [2].

LEMMA 4.2.

n

$n(x;s) = L (_l)j-l $n+l-.i(X)ep.;(s),
j~l

S<X. (4.8)

Proof. It is easy to see that vII~S)$n(x;s)== 0 for S < x (the differentiations
are to be performed with respect to s). Therefore, we can write

$n(X;s) = i c,;(x)ep';(s)
j=l

for s < x. In order to determine the coefficient of ep.;(s), operate on $n(x;s)
with L~"l.1 (defined in (1.2)) and set s = iX. That (4.8) holds when s < iX, follows
from the unicity of the initial-value problem for ordinary differential equations.

Let
a.;(x) = (-l)H $n+1-.;(x). (4.9)

By using the representation (4.8), the determinant of the left side of (4.6) can
be written as

I
llepi(Sj)llf:J'::~ I, (4.10)

Ilbl(sj)lll~L~ 1 I

where hl(s) = L~~1 at(xn+l)ept(S). The matrix of (4.10) can be written in the
form

II
In-k Oklll'llep;(s')II~ '-I>

( )
I ) 1.)-

Ilaj X n+1 111~L~ 1

where In- k is the n - k x n - k identity matrix. Therefore, the determinant
(4.10) is equal to

(4.11)

According to the Remark above, we can assume that the initial value point iX

satisfies iX < Sl' Then detllepi(sj)117.j~1> 0 by Theorem 1.1, Chapter 6 of [3].
According to (4.9), the first determinant in (4.11) is

l n-l
~ L j ~

det lie_1)n-J cP.;(xn+1)lll,J=k = (_l)j~n-k det IICPi(Xn+l)IIL~I

n-l
I j

~ (_l)J~n-k.
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Comparing this with (4.7), we see that det!la)l)lltti=k+I > 0. Using a suitable
translation, the same proof shows that

det Ila(l)llk.m+~-1 > °j 1~1.J~m , k== 1, ... ,n;-oo <m < 00. (4.12)

To finish the proof, we remove the restriction that the columns be con
secutive, by applying the Fekete theorem ([3], Chapter 2, Theorem 3.2)
successively to (4.12), with k = 1, k = 2, ... , k = n.

SECTION 5. A VARIATION-DIMINISHING SPLINE FOR A FINITE INTERVAL
WITH FINITELy-MANY KNOTS

As mentioned in Section 1, Schoenberg [6] pointed out that the key to find
ing a variation-diminishing polynomial spline with finitely many knots in
(a, b), which also preserves generalized linear functions on [a, b), is the
introduction of knots of multiplicity n at x = a and x = b. In this section we
will define a generalized spline with these properties.

DEFINITION 5.1. Let {Xj} satisfy Xj < Xj+I' Sex) is a generalized spline with
knots {Xj}, associated with the differential expression Jln (see (1.1)), if
(JlnS) (x) = 0, x -=f Xj' Xj is called a knot ofmultiplicity JL if

for small positive E.

A knot of multiplicity one is a simple knot, and Sex) has a jump discon
tinuity at a knot of multiplicity n. See [3], Chapter 10, for more details.

We will want to consider continuous functions defined on a finite interval
[a,b] and approximating splines with m simple knots {Xj}j~1 in (a,b),
a < XI < X2 < ... < Xm < b. We introduce knots of multiplicity n at x = a
and at x = b, so Sex) has a jump discontinuity at these two points. We will
assume that

SeX) = 0, X< a;x > b. (5.1)

Set Xo = a, Xm+1 = b. Let {¢ix)}j=1 be a basic set of solutions for uKnu = 0,
as in (2.3), with initial values at x = a: (£1-1 ¢j)(a) = wn+2-ia)oij'

The definition of the basic spline functions in Section 2 has to be modified
for k = 1, 2, ... , n - 1 and k = m + 2, m + 3, ... , m + n, as for these values
Mk(x) is a spline with multiple knots. Recall the definitions in (2.5) and (2.6).
We define
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cP 1(a) cPia) cPn+ l-k(a) ... cP.(a) cPn(a;x)

0 cP2,ia) cP2,n+l-k(a) cP2, n(a) cP2, .(a; x)

Mk(x) = 0 0 cPn+l-k,n+l-k(a) ... cPn+ l-k, n(a) cPn+ l-k, n(a; x) ,

cPl(Xl) cP2(Xl) cPn+l-k(X1) cPn(X1) cPn(x1;a)

cP 1(Xk) cP2(Xk) cPn+ l-k(Xk) cPn(Xk) cPn(xk;a)

k= 1,2, ...,n-l, (5.2)

cP 1(Xk-n) cP2(Xk-n) cPk-m(Xk-n) cPn(Xk-n) cPn(Xk-n;x)

cPl(Xm) cPixm) cPk-m(Xm) cPn(Xm) cPn(Xm;x)

Mk(x) = cPI(b) cPib) cPk-m(b) cPn(b) cPn(b;x)

0 cP2,lb) cPM-m(b) cP2, n(b) cP2, n(b; x)

o 0 cPk-m,k-m(b) cPk-m,n(b) cPk-m,n(b;x)

k =m + 2,m + 3, .. .,m + n, (5.3)

where Ck is the reciprocal of the given determinant with the last column
replaced by

(cPn+1(a), cP2,n+l(a), ..., cPn+l-k,n+l(a), cPn+I(XI),"" cPn+I(Xk))

in (5.2), and in (5.3) by

(cPn+1(Xk-n),"" cPn+l(Xm), cPn+l(b), cP2,n+l(b), ... , cPk-m,n+l(b)).

For the remaining values of k, Mk(x) is defined as is Mk-n(x) in Section 2.
As in Section 2, Ck > O. (When m + 2 - n < 0, modifications as in (5.2) and
(5.3) must be made, in both the upper and lower parts of the determinants
defining some of the basic spline functions; see [4] for details.)

For these basic spline functions with multiple knots, results analogous to
those in Section 2 are valid.

THEOREM 5.1. Let S(x) be a spline associated with the differential expression
JIm with knots {xj}j,,:-d, Xj < Xj+b where Xj is a knot of multiplicity Ji-j>
I.;;; Ji-j';;; n. If Ji- = "Lj,,:-d Ji-j;;;' n + 1, and S(x) = 0 for x 1= [xQ,xm+.l, then S(x)
can be represented uniquely in the form

/-,-n

S(x) = "L Cj Mix),
.1-1

(5.4)
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where {Mix)} is the set of basic spline functions for the given knots with the
given multiplicities.

Proof This theorem involves a straightforward generalization of Theorem
4.2, Chapter 10, of [3]; it was stated for the polynomial spline case in [1].

Therefore, there are unique representations

m+n
if>k(X) = 2: aSk) Mix),

j~l

a<,x<,b;k= 1,2, ...,n, (5.5)

where the if>k(X) are as defined in (1.3) for a <, x <, b and zero outside [a,b],
and the Mix) are the B-splines associated with Jtn and the knots {Xj}j:J,
as defined above. As in Section 3 for the case of an infinite number of knots,
define

j=I,2, ...,m+n, (5.6)
where the dj are positive constants, to be determined. In order to obtain
the desired representation, we need to determine {dj}J':f and {zj}j:f,
a <, Zj < Zj+1 <, b, such that

k= 1,2;j= 1,2, ... ,m+n;
so we need

aS2)laS!) = if>z{Zj)!if> 1(Zj), j=I,2, ...,m+n. (5.7)

As in Section 3, it is sufficient to show that as!) > 0, aS2
)laS!) is strictly increasing

inj, and ZI, Zm+n E [a,b].

THEOREM 5.2. Let {Mix)}j~+f be the B-splines associated with Jtnand the
knots {xj}j:J, as defined above. With aSk) defined as in (5.5),

det IlaS~lltm~1 > 0; k = 1,2, ... , n; 1<')1 <j2 < ... <A <, m + n.

Schoenberg stated this result for polynomial splines in [6], but the proof
has not been published. One shows that

det IlaS~r-IIIL=1 > ° for k = 1,2, .. .,n; r = 1,2, ...,n + m - k + I, (5.8)

and then uses the Fekete theorem. However, if I <, k < n and I .;;; r.;;; n - k,
there is no n x n submatrix with the matrix in (5.8) in the upper-right corner.
We can get our hands on the matrix in (5.8) by considering the system of
equations

n

if>i(S) = 2: as/) Mis),
j~l

i= 1,2, ...,p,

l=q,q-I, ...,I,

t=r,r-I, ...,I,
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where G = X o< x < x" and p, q, and r are non-negative integers such that
p + q + r = n, p ? 1. A few technical variations must be made in the method
used to prove Theorem 3.1; see [4] for details.

LEMMA 5.3. We can define {Zj}j!r as in (5.7), with z, = a, Zm+n = b.

Proof We can write Mk(x) = lim Mk(x;t), 1 < k < n, where Mk(x;t) is
qa

defined similarly to Mk(x) , but with a replaced by t in the numerator. Since
Mk(x;t) > 0, with strict inequality if and only if t < x < Xk (see Theorem 1.l,
Chapter 10, of [3]), Mix) = 0 unless a < x < Xk' Mk(x) has a knot of multi
plicity n + 1 - k at x = a for I < k < n. Therefore, Mk(x) is continuous at
x = a for 2 < k < n, so Mk(x) ~ 0 as x.} a for these values of k. From the
definition, it is clear that Mlx) ~ ccPn(x1) as x .} a, c i= O. Therefore

0= lim cP2(X) = a\2) c$nCXt),
xj,a

so we must have a\2) = O. Thus, if we define Zj by (5.7), z, = a.
It is easy to see that Mix) ~ 0 as x t b for j = I, 2, ' , " m +n - 1. There

fore,

..L (b) -I' a~+n (I) M ()'1'2 - 1m (f) Gm+n m+n X ,
xtb am+n

cPl(b) = lim a~nn Mm+n(x).
xtb

From these equations we see that (5.7) is valid for j = m + n if we choose
Zm+n = b.

Let {Zj}j!r be defined by (5.7), We have shown that Zj E [a,b], and the Zj
are strictly increasing. Define

j= 1,2, ... ,m+n.

We consider the generalized spline approximation

m+n

Sex) = L f(zj) Nix),
j~'

(5.9)

THEOREM 5.4. The generalized spline approximation method defined in (5.9)
is variation-diminishing on [a, b] and preserves functions of the form

Proof The Nix) and Zj have been chosen so that generalized linear functions
are preserved. It can be shown, as in [3], Chapter 10, that Mix) is totally
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positive in j and x, therefore Nix) is also so. By the argument used in the
proof ofTheorem 3.3, this implies that the transformation in (5.9) is variation
diminishing.
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