A Variation-Diminishing Generalized Spline Approximation Method¹

SAMUEL KARLIN AND JOHN M. KARON

Department of Mathematics, Stanford University, Stanford, California 94305

SECTION 1. INTRODUCTION

In this paper we will define a generalized-spline approximation method which is variation-diminishing and preserves functions which are linear in a generalized sense. (Variation-diminishing transformations are defined in Definition 1.3.) In Section 3 we will define an approximating spline with an infinite number of knots. The modifications needed to prove similar results for splines defined on a finite interval with a finite number of knots are indicated in Section 5. Our results generalize the work of Schoenberg reported in [6], where he stated without proofs corresponding results for the special case of polynomial splines.

Our generalized splines are piecewise solutions of $\mathcal{M}_n u = 0$, where \mathcal{M}_n is a differential expression of the form

$$(\mathcal{M}_{n}u)(x) = \left(\frac{1}{w_{n+1}(x)}\frac{d}{dx}\frac{1}{w_{n}(x)}\frac{d}{dx}\frac{1}{w_{n-1}(x)}\cdots\frac{d}{dx}\frac{1}{w_{1}(x)}\right)u(x)$$
(1.1)

with $w_i(x) > 0$ and $w_i(x)$ of continuity class C^n . It will be useful to define

$$(L_0 u)(x) = u(x),$$

$$(L_{j}u)(x) = \left(\frac{d}{dx}\frac{1}{w_{j}(x)}\frac{d}{dx}\frac{1}{w_{j-1}(x)}\cdots\frac{d}{dx}\frac{1}{w_{1}(x)}\right)u(x), \qquad i = 1, 2, \dots, n.$$
(1.2)

A basic set of solutions for $\mathcal{M}_n u = 0$ is

$$\begin{aligned} \phi_1(x) &= w_1(x), \\ \phi_2(x) &= w_1(x) \int_a^x w_2(t_2) dt_2, \\ \phi_j(x) &= w_1(x) \int_a^x w_2(t_2) dt_2 \int_a^{t_2} w_3(t_3) dt_3 \dots \int_a^{t_{j-1}} w_j(t_j) dt_j, \quad j = 3, 4, \dots, n \end{aligned}$$
(1.3)

where α is a fixed point. Actually, by suitable transformations of the dependent and independent variables, we could assume that $\phi_1(x) \equiv 1$ and $\phi_2(x) = x - \alpha$. Note that $(L_{i-1}\phi_j)(\alpha) = \delta_{ij}w_j(\alpha)$, i, j = 1, 2, ..., n.

¹ This research was supported in part under Contract N0014-67-A-0112-0015 at Stanford University, Stanford, California.

DEFINITION 1.1. S(x) is a generalized spline on (a, b) associated with \mathcal{M}_n , with simple knots $\{x_j\}$, if $(\mathcal{M}_n S)(x) = 0$ for $x \in (a, b)$, $x \neq x_j$, and $S(x) \in C^{n-2}(a, b)$.

The following notation is useful.

DEFINITION 1.2. Let f(x) be defined on a subset X of the real line. $S^{-}(f, X)$ is the number of sign changes of f(x) as x traverses X, where zeros of f(x) are not counted as changes in sign (see [3], page 20).

DEFINITION 1.3. A transformation T which maps a family of functions \mathcal{F} defined on X into functions defined on X_1 , is called *variation diminishing* if

$$S^{-}(Tf; X_1) \leq S^{-}(f; X)$$

for all functions f in \mathcal{F} .

Variation-diminishing transformations are investigated extensively in [3]. Using these definitions, we can state our basic results.

THEOREM 3.3. Let $\{x_j\}_{j=-\infty}^{\infty}$ satisfy: $x_j < x_{j+1}$ for all j; $\lim_{j \to -\infty} x_j = a$; $\lim_{j \to \infty} x_j = b$ (we allow $a = -\infty$, $b = \infty$). Let f be defined on (a, b) and continuous. We can find splines $N_j(x), -\infty < j < \infty$, associated with \mathcal{M}_n , with simple knots $\{x_j\}_{j=-\infty}^{\infty}$, and points $z_j, -\infty < j < \infty$, $a < z_j < z_{j+1} < b$, such that

$$\phi_i(x) = \sum_{j=-\infty}^{\infty} \phi_i(z_j) N_j(x), \qquad i = 1, 2; a < x < b, \tag{1.4}$$

$$S^{-}\left(\sum_{j=-\infty}^{\infty} f(z_j) N_j(x); (a,b)\right) \leq S^{-}(f; (a,b)).$$

$$(1.5)$$

The $N_j(x)$ and z_j are independent of f(x). (The convergence of $\sum_{j=-\infty}^{\infty} f(z_j) N_j(x)$ will hold, since, for each x, only a finite number of terms of the sum are distinct from zero.)

THEOREM 5.4. Let $-\infty < a < x_1 < x_2 < \ldots < x_m < b < \infty$. Let f be a continuous function defined in [a,b]. We can find splines $N_j(x)$, $j = 1, 2, \ldots, m + n$, associated with \mathcal{M}_n with simple $\{x_j\}_{j=1}^m$ and knots of multiplicity n at x = a (see Definition 5.1), and points z_j , $a = z_1 < z_2 < \ldots < z_{m+n} = b$, such that

$$\begin{aligned} \phi_i(x) &= \sum_{j=1}^{m+n} \phi_i(z_j) \, N_j(x), \qquad i = 1, 2; a \leqslant x \leqslant b, \\ S^- \left(\sum_{j=1}^{m+n} f(z_j) \, N_j(x); [a, b] \right) \leqslant S^-(f; [a, b]). \end{aligned}$$

The $N_j(x)$ and z_j are independent of f(x).

The fact that the spline approximations are variation-diminishing and preserve generalized linear functions implies that they preserve generalized convexity properties, in the following sense: with $S(x; f) = \sum f(z_j) N_j(x)$,

$$S^{-}(S(x;f) - a_1\phi_1(x) - a_2\phi_2(x);(a,b)) = S^{-}(S(x;f - a_1\phi_1 - a_2\phi_2);(a,b))$$

$$\leq S^{-}(f - a_1\phi_1 - a_2\phi_2;(a,b)).$$

Thus, if f is a generalized convex or concave function on (a,b), so is the approximating spline S(x;f). (Generalized convexity is discussed in [3], Chapter 6.)

Schoenberg announced the analogous results for polynomial splines in [6], i.e., all $w_j(x)$ are constant, so $\mathcal{M}_n = d^n/dx^n$ and $\phi_j(x) = (x - \alpha)^j$. He was able to evaluate the nodes z_j and splines $N_j(x)$ in some special cases and obtain convergence estimates.

SECTION 2. BACKGROUND FOR SPLINES WITH SIMPLE KNOTS

Generalized splines on (a, b) associated with the differential expression \mathcal{M}_n are defined in Definition 1.1. Our results are based on a representation formula for such splines as linear combinations of certain generalized basic spline functions which were introduced by Karlin in [3] in the study of self-adjoint differential expressions of the form (1.1). By modifying that definition, we can consider non-self-adjoint differential expressions.

Let $\hat{\mathcal{M}}_n$ be the formal differential operator adjoint to \mathcal{M}_n :

$$\hat{\mathscr{M}}_{n}u(x) = (-1)^{n} \left(\frac{1}{w_{1}(x)} \frac{d}{dx} \frac{1}{w_{2}(x)} \frac{d}{dx} \frac{1}{w_{3}(x)} \cdots \frac{d}{dx} \frac{1}{w_{n+1}(x)} \right) u(x).$$
(2.1)

Analogously to (1.2) and (1.3), we define

$$(\hat{L}_{0}u)(x) = u(x),$$

$$(\hat{L}_{j}u)(x) = \left(\frac{d}{dx}\frac{1}{w_{n+2-j}(x)}\frac{d}{dx}\frac{1}{w_{n+3-j}(x)}\cdots\frac{d}{dx}\frac{1}{w_{n+1}(x)}\right)u(x), \quad i = 1, 2, \dots, n$$
(2.2)

and

$$\hat{\phi}_{1}(x) = w_{n+1}(x),$$

$$\hat{\phi}_{2}(x) = w_{n+1}(x) \int_{\alpha}^{x} w_{n}(t_{n}) dt_{n},$$

$$\hat{\phi}_{j}(x) = w_{n+1}(x) \int_{\alpha}^{x} w_{n}(t_{n}) dt_{n} \int_{\alpha}^{t_{n}} w_{n-1}(t_{n-1}) dt_{n-1} \dots$$

$$\int_{\alpha}^{t_{n+3-j}} w_{n+2-j}(t_{n'\cdot 2-j}) dt_{n+2-j}, \quad j = 3, 4, \dots, n, \qquad (2.3)$$

where α is a fixed point,

 $\{\hat{\phi}_j(x)\}_{j=1}^n$ is a basic set of solutions for $\hat{\mathcal{M}}_n u = 0$. The fundamental solution associated with $\hat{\mathcal{M}}_n$ is

$$\hat{\phi}_{n}(x;s) = \begin{cases} 0 & x < s \\ w_{1}(s) w_{n+1}(x) \int_{s}^{x} w_{n}(t_{n}) dt_{n} \int_{s}^{t_{n}} w_{n-1}(t_{n-1}) dt_{n-1} \dots \int_{s}^{t_{3}} w_{2}(t_{2}) dt_{2}, \\ s < x. \end{cases}$$
(2.4)

For fixed x, it is a generalized spline associated with $\hat{\mathcal{M}}_n$, with a simple knot at s = x. It is useful to define

$$\hat{\phi}_{j,n}(x;s) = \hat{L}_{j-1}^{(x)}\phi_n(x;s)$$

$$= w_1(s)w_{n+2-j}(x)\int_s^x w_{n+1-j}(t_{n+1-j})dt_{n+1-j}\dots\int_s^{t_3} w_2(t_2)dt_2,$$

$$s < x, \quad j = 2, 3, \dots, n, \qquad (2.5)$$

$$\hat{\phi}_{j,n}(x) = \hat{\phi}_{j,n}(x;\alpha)/w_1(\alpha) = \hat{L}_{j-1}\hat{\phi}_n(x), \qquad j = 2, 3, \dots, n;$$
 (2.6)

the differentiations in (2.5) are to be made with respect to x.

We will assume that we deal with splines with simple knots $\{x_j\}_{j=-\infty}^{\infty}$, where $a = \lim_{j \to -\infty} x_j$, $b = \lim_{j \to \infty} x_j$, and $x_j < x_{j+1}$.

DEFINITION 2.1. The basic spline functions (B-splines) for the differential expression \mathcal{M}_n and knots $\{x_j\}_{j=-\infty}^{\infty}$, are

$$M_{k}(x) = \frac{\begin{vmatrix} \hat{\phi}_{1}(x_{k}) & \dots & \hat{\phi}_{n}(x_{k}) & \hat{\phi}_{n}(x_{k}; x) \\ \vdots & \vdots & \vdots \\ \hat{\phi}_{1}(x_{k+n}) & \dots & \hat{\phi}_{n}(x_{k+n}) & \hat{\phi}_{n}(x_{k+n}; x) \\ \det \| \hat{\phi}_{j}(x_{l}) \|_{l=k, \dots, k+n; j=1, \dots, n+1}, \qquad k = \dots, -1, 0, 1, \dots$$
(2.7)

In defining $\hat{\phi}_{n+1}(x)$, we can choose $w_{n+2}(x) \equiv 1$.

Theorem 1.1 in Chapter 6 of [3] shows that the denominator of $M_k(x)$ is strictly positive. It is easy to show that the definition of $M_k(x)$ is independent of the choice of α ; see [3], Chapter 10, Section 4. Therefore, $M_k(x)$ is well-defined.

 $M_k(x)$ is a generalized *n*th divided difference of $\hat{\phi}_n(x;s)$; in fact, in the polynomial spline case, it is a constant times the *n*th divided difference of $\phi_n(x;s) = (x-s)_+^{n-1}$. Note that $M_k(x)$ is a spline associated with \mathcal{M}_n , with simple knots at $x = x_k, x_{k+1}, \ldots, x_{k+n}$.

THEOREM 2.1. Let S(x) be a spline on (a,b) associated with \mathcal{M}_n , with simple knots $\{x_j\}_{j=-\infty}^{\infty}$. Then S(x) can be represented uniquely in the form

$$S(x) = \sum_{j=-\infty}^{\infty} c_j M_j(x), \qquad (2.8)$$

where the c_i are constants.

Proof. See [3], Chapter 10, Section 4.

The sum in (2.8) converges since, for any x, only a finite number of $M_j(x)$ are nonzero. Indeed, Lemma 4.1 in Chapter 10 of [3] shows that $M_j(x) \ge 0$ for all x, and $M_j(x) > 0$ if, and only if, $x_j < x < x_{j+n}$.

THEOREM 2.2. Let S(x) be a spline on (a,b) associated with \mathcal{M}_n , with simple knots $\{x_j\}_{j=-\infty}^{\infty}$, admitting the representation (2.8). Then

$$S^{-}(S(x);(a,b)) \leq S^{-}(\{c_j\}_{j=-\infty}^{\infty}).$$

Proof. $M_j(x)$ is totally positive in j and x (see Theorem 4.1, Chapter 10, in [3]). Any totally positive kernel induces a variation-diminishing transformation (see Theorem 3.1, Chapter 5, in [3]).

SECTION 3. A VARIATION-DIMINISHING GENERALIZED SPLINE WITH AN INFINITE NUMBER OF KNOTS

We wish to find a variation-diminishing generalized spline associated with \mathcal{M}_n , with simple knote $\{x_j\}_{j=-\infty}^{\infty}$, which preserves generalized linear functions. Theorems 2.1 and 2.2 provide two of the key results.

We can regard $\phi_1(x)$ and $\phi_2(x)$ (see (1.3)) as splines associated with \mathcal{M}_n . Therefore, according to Theorem 2.1, there are unique representations

$$\phi_k(x) = \sum_{j=-\infty}^{\infty} a_j^{(k)} M_j(x), \qquad k = 1, 2; a < x < b.$$

It will be useful to define

$$N_j(x) = d_j M_j(x),$$
 (3.1)

where the d_j are positive constants, to be determined. In order to obtain the desired representation, we need to determine $\{d_j\}_{j=-\infty}^{\infty}$ and $\{z_j\}_{j=-\infty}^{\infty}$, $a < z_j < z_{j+1} < b$, such that

$$\frac{a_j^{(k)}}{d_j} = \phi_k(z_j), \qquad k = 1, 2; -\infty < j < \infty;$$
(3.2)

and so we need

$$\frac{a_j^{(2)}}{a_j^{(1)}} = \frac{\phi_2(z_j)}{\phi_1(z_j)}, \qquad -\infty < j < \infty.$$
(3.3)

Since

$$\phi_2(x)/\phi_1(x) = \int_{\alpha}^{x} w_2(t) dt$$

is strictly increasing, in order to establish that $\{z_j\}$ is increasing, we must show that

$$\{a_j^{(2)}/a_j^{(1)}\}\tag{3.4}$$

is strictly increasing. Moreover, once $\{z_j\}$ is determined, we have

$$d_j = a_j^{(1)}/\phi_1(z_j), \qquad -\infty < j < \infty.$$

Therefore, we also wish to prove that

$$a_j^{(1)} > 0, \qquad -\infty < j < \infty. \tag{3.5}$$

In order to prove (3.4) and (3.5), we will establish the following more general result (the proof is given in Section 4).

THEOREM 3.1. Let $\{M_j(x)\}_{j=-\infty}^{\infty}$ be the B-splines associated with \mathcal{M}_n and the simple knots $\{x_j\}_{j=-\infty}^{\infty}$, as defined in Section 2. Let

$$\phi_k(x) = \sum_{j=-\infty}^{\infty} a_j^{(k)} M_j(x), \qquad k = 1, 2, \dots, n; a < x < b.$$
(3.6)

Then

$$\det \|a_{j_m}^{(l)}\|_{l,m=1}^k > 0, \qquad k = 1, 2, \dots, n; -\infty < j_1 < j_2 < \dots < j_k < \infty.$$
(3.7)

Schoenberg stated this result without proof for the case of polynomial splines in [6].

LEMMA 3.2. When (3.7) holds, we can choose the nodes z_j in the interval (a,b).

Proof. We will show that z_j can be determined satisfying (3.3) with $a < z_j$. The proof that $z_j < b$ is similar.

Obviously, we may assume $a > -\infty$. Suppose $a_i^{(2)}/a_i^{(1)} < \phi_2(a)/\phi_1(a)$ for some *i*. Then

$$\phi_2(x) = \sum_{j=i-n+1}^{i} \frac{a_j^{(2)}}{a_j^{(1)}} a_j^{(1)} M_j(x) < \frac{\phi_2(a)}{\phi_1(a)} \phi_1(x), \qquad x_i < x < x_{i+1}, \quad (3.8)$$

since $\phi_1(x) = \sum_{j=l-n+1}^{i} a_j^{(1)} M_j(x)$ when $x_i < x < x_{i+1}$ (recall that $M_j(x) \neq 0$ iff $x_j < x < x_{j+n}$), $a_j^{(1)} > 0$, and $a_j^{(2)}/a_j^{(1)}$ is strictly increasing. But (3.8) implies $\phi_2(x)/\phi_1(x) < \phi_2(a)/\phi_1(a)$, contradicting the fact that $\phi_2(x)/\phi_1(x)$ is strictly increasing.

260

Suppose that f(x) is defined on (a, b). The generalized spline

$$S(x) = \sum_{j=-\infty}^{\infty} f(z_j) N_j(x)$$
(3.9)

is well-defined, where $N_j(x)$ is defined by (3.1) and (3.2), and z_j is defined by (3.3).

THEOREM 3.3. The generalized spline approximation S(x) defined in (3.9) preserves functions of the form $A\phi_1(x) + B\phi_2(x)$ (A and B constants) and is variation-diminishing on (a,b).

Proof. We have defined the $N_j(x)$ and z_j in such a way that generalized linear functions are preserved. Since $a_j^{(1)}\phi_1(z_j) > 0$, we see from Theorem 2.2 that

$$S^{-}(S(x);(a,b)) \leqslant S^{-}(f(z_j);-\infty < j < \infty).$$

 $\{z_j\}_{j=-\infty}^{\infty}$ is strictly increasing, so

$$S^{-}(f(z_j); -\infty < j < \infty) \leq S^{-}(f(x); (a, b)).$$

Remark. $\{z_j\}$ and $\{N_j(x)\}$ depend on the choice of α used as an initial-value point for $\phi_2(x)$.

SECTION 4. PROOF OF THEOREM 3.1

THEOREM 3.1. Let $\{M_j(x)\}_{j=-\infty}^{\infty}$ be the basic spline functions associated with the operator \mathcal{M}_n and simple knots $\{x_j\}_{j=-\infty}^{\infty}$, as defined in Section 2. Suppose that

$$\phi_k(x) = \sum_{j=-\infty}^{\infty} a_j^{(k)} M_j(x), \qquad k = 1, 2, \dots, n; a < x < b.$$
(4.1)

Then

$$\det \|a_{j_m}^{(l)}\|_{l,m=1}^k > 0, \qquad k = 1, 2, \dots, n; -\infty < j_1 < j_2 < \dots < j_k < \infty.$$
(4.2)

Remark. We must prove that the determinant of any $k \times k$ submatrix drawn from the first k rows of $||a_j^{(1)}||_{l=1, j=-\infty}^{n,\infty}$ is strictly positive. We will prove this result for submatrices composed of consecutive columns, and then use the Fekete theorem (Theorem 3.2 of Chapter 2 in [3]) to get (4.2). Since $w_1(x)$ is independent of the initial value point $x = \alpha$ for the fundamental solution set $\{\phi_j(x)\}_{j=1}^n((L_{i-1}\phi_j)(\alpha) = w_j(\alpha)\delta_{ij})$, it is easy to show that $\det \|\phi_i(x_j)\|_{i,j=1}^p$ is independent of the choice of α . Since $M_k(x)$ is also independent of the choice of α , we can assume that all *B*-splines are defined using the same initial value point.

Proof. We will need the following representation.

LEMMA 4.1. For
$$j = 1, 2, ..., n$$
 and $x_n < s < x_{n+1}$,
 $\hat{\phi}_n(x_{n+j}; s) = \sum_{i=1}^j c_i^{(j)} M_i(s),$
(4.3)

where

$$c_j^{(j)} > 0.$$
 (4.4)

Proof. When $x_n < s < x_{n+1}$, $\hat{\phi}_n(x_j; s) = 0$ for j = 1, 2, ..., n. Therefore

$$M_1(s) = \det \|\hat{\phi}_i(x_j)\|_{i,j=1}^n \cdot \hat{\phi}_n(x_{n+1};s) / \det \|\hat{\phi}_i(x_j)\|_{i,j=1}^{n+1}$$

Since det $\|\hat{\phi}_i(x_j)\|_{i,j=1}^n > 0$ (see [3], Chapter 6, Theorem 1.1), the lemma is true for j = 1. The induction hypothesis is that (4.3) is true for $j = 1, 2, ..., k-1, 2 \le k \le n$. Expanding $M_k(s)$, we get

$$M_k(s) = d_k \hat{\phi}_n(x_{n+k}; s) + \sum_{i=1}^{k-1} d_i \hat{\phi}_n(x_{n+i}; s),$$

$$d_k = \det \|\hat{\phi}_i(x_{k+j-1})\|_{i,j=1}^n / \det \|\hat{\phi}_i(x_{k+j-1})\|_{i,j=1}^{n+1}.$$

Since $d_k > 0$, it is clear using the induction hypothesis that (4.3) is valid for j = k.

In order to prove (4.2) for $n - k \times n - k$ submatrices composed of n - k consecutive columns (k = 0, 1, ..., n - 1), we consider the system of equations

$$\phi_{i}(s_{j}) = \sum_{\mu=1}^{n} a_{\mu}^{(i)} M_{\mu}(s_{j}), \qquad i = 1, 2, \dots, n-k;$$

$$\hat{\phi}_{n}(x_{n+1}; s_{j}) = \sum_{\mu=1}^{l} c_{\mu}^{(l)} M_{\mu}(s_{j}), \qquad l = k, k-1, \dots, 1,$$
(4.5)

for j = 1, 2, ..., n, where the s_j are chosen so that $x_n < s_1 < s_2 < ... < s_n < x_{n+1}$ (recall that $M_k(x) \neq 0$ iff $x_k < x < x_{k+n}$). When k = 0, the equations for $\hat{\phi}_n(x_{n+1}; s_j)$ are omitted. In matrix form, (4.5) can be written

$$\left\| \frac{\|\phi_{i}(s_{j})\|_{i,j=1}^{n-k,n}}{\|\hat{\phi}_{n}(x_{n+1};s_{j})\|_{l=k,j=1}^{1,n}} \right\| = \left\| \frac{\|a_{\mu}^{(l)}\|_{i,\mu=1}^{n-k,n}}{\|c_{\mu}^{(l)}\|_{l=k,\mu=1}^{-k,n}} \right\| \cdot \|M_{\mu}(s_{j})\|_{\mu,j=1}^{n}, \quad (4.6)$$

where we define $c_j^{(l)} = 0$ when i < j, and $0_{k,n-k}$ is the $k \times n - k$ zero matrix. The determinant of the right-hand side of (4.6) is

$$(-1)^{i=n-k+2} \stackrel{i}{=} \left(\prod_{i=1}^{k} c_i^{(i)} \right) \cdot \det \|a_{k+m}^{(i)}\|_{i,m=1}^{n-k} \cdot \det \|M_{\mu}(s_m)\|_{\mu,m=1}^{n} \qquad (4.7)$$

$$\stackrel{s}{=} (-1)^{i=n-k+2} \stackrel{i}{=} \det \|a_{k+m}^{(l)}\|_{i,m=1}^{n-k},$$

since $c_i^{(l)} > 0$ and det $||M_{\mu}(s_j)||_{\mu,j=1}^n > 0$ (see [3], Chapter 10, Lemma 4.2); the symbol $c \stackrel{s}{=} d$ means that cd > 0.

In order to evaluate the determinant of the matrix on the left side of (4.6), we need the following representation, which is the non-self adjoint version of a representation formula in [2].

Lemma 4.2.

$$\hat{\phi}_n(x;s) = \sum_{j=1}^n (-1)^{j-1} \hat{\phi}_{n+1-j}(x) \phi_j(s), \qquad s < x.$$
(4.8)

Proof. It is easy to see that $\mathcal{M}_n^{(s)} \hat{\phi}_n(x;s) \equiv 0$ for s < x (the differentiations are to be performed with respect to s). Therefore, we can write

$$\hat{\phi}_n(x;s) = \sum_{j=1}^n c_j(x) \phi_j(s)$$

for s < x. In order to determine the coefficient of $\phi_j(s)$, operate on $\hat{\phi}_n(x;s)$ with $L_{j-1}^{(s)}$ (defined in (1.2)) and set $s = \alpha$. That (4.8) holds when $s < \alpha$, follows from the unicity of the initial-value problem for ordinary differential equations.

Let

$$a_j(x) = (-1)^{j-1} \hat{\phi}_{n+1-j}(x). \tag{4.9}$$

By using the representation (4.8), the determinant of the left side of (4.6) can be written as

$$\begin{vmatrix} \|\phi_i(s_j)\|_{i,j=1}^{n-k,n} \\ \|b_l(s_j)\|_{l=k,j=1}^{1,n} \end{vmatrix},$$
(4.10)

where $b_i(s) = \sum_{t=1}^n a_t(x_{n+1})\phi_t(s)$. The matrix of (4.10) can be written in the form

$$\left\| \begin{array}{c} I_{n-k} & 0_k \\ \|a_j(x_{n+1})\|_{l-k,j=1}^{1,n} \\ \|b_j(x_{n+1})\|_{l-k,j=1}^{1,n} \end{array} \right\| \cdot \|\phi_i(s_j)\|_{l,j=1}^n,$$

where I_{n-k} is the $n-k \times n-k$ identity matrix. Therefore, the determinant (4.10) is equal to

$$\det \|a_j(x_{n+1})\|_{l=k,\,j=n-k+1}^{1,n} \cdot \det \|\phi_i(s_j)\|_{i,\,j=1}^n.$$
(4.11)

According to the Remark above, we can assume that the initial value point α satisfies $\alpha < s_1$. Then det $||\phi_i(s_j)||_{i,j=1}^n > 0$ by Theorem 1.1, Chapter 6 of [3]. According to (4.9), the first determinant in (4.11) is

$$\det \|(-1)^{n-j} \hat{\phi}_j(x_{n+1})\|_{l,j=k}^1 = (-1)^{j=n-k} \det \|\hat{\phi}_i(x_{n+1})\|_{l,j=1}^k$$
$$\stackrel{n-1}{\stackrel{j}{=} n-k}{\stackrel{j}{=} (-1)^{j=n-k}}.$$

Comparing this with (4.7), we see that det $||a_j^{(i)}||_{i=1,j=k+1}^{n-k,n} > 0$. Using a suitable translation, the same proof shows that

$$\det \|a_i^{(i)}\|_{i=1, j=m}^{k, m+k-1} > 0, \qquad k = 1, \dots, n; -\infty < m < \infty.$$
(4.12)

To finish the proof, we remove the restriction that the columns be consecutive, by applying the Fekete theorem ([3], Chapter 2, Theorem 3.2) successively to (4.12), with k = 1, k = 2, ..., k = n.

Section 5. A Variation-Diminishing Spline for a Finite Interval with Finitely-Many Knots

As mentioned in Section 1, Schoenberg [6] pointed out that the key to finding a variation-diminishing polynomial spline with finitely many knots in (a,b), which also preserves generalized linear functions on [a,b], is the introduction of knots of multiplicity n at x = a and x = b. In this section we will define a generalized spline with these properties.

DEFINITION 5.1. Let $\{x_j\}$ satisfy $x_j < x_{j+1}$. S(x) is a generalized spline with knots $\{x_j\}$, associated with the differential expression \mathcal{M}_n (see (1.1)), if $(\mathcal{M}_n S)(x) = 0, x \neq x_j$. x_j is called a *knot of multiplicity* μ if

$$S(x) \in C^{n-1-\mu}[x_j - \epsilon, x_j + \epsilon]$$

for small positive ϵ .

A knot of multiplicity one is a simple knot, and S(x) has a jump discontinuity at a knot of multiplicity n. See [3], Chapter 10, for more details.

We will want to consider continuous functions defined on a finite interval [a,b] and approximating splines with *m* simple knots $\{x_j\}_{j=1}^m$ in (a,b), $a < x_1 < x_2 < \ldots < x_m < b$. We introduce knots of multiplicity *n* at x = a and at x = b, so S(x) has a jump discontinuity at these two points. We will assume that

$$S(x) = 0, \quad x < a; x > b.$$
 (5.1)

Set $x_0 = a$, $x_{m+1} = b$. Let $\{\hat{\phi}_j(x)\}_{j=1}^n$ be a basic set of solutions for $\hat{\mathcal{M}}_n u = 0$, as in (2.3), with initial values at x = a: $(\hat{\mathcal{L}}_{i-1}\hat{\phi}_j)(a) = w_{n+2-j}(a)\delta_{ij}$.

The definition of the basic spline functions in Section 2 has to be modified for k = 1, 2, ..., n-1 and k = m+2, m+3, ..., m+n, as for these values $M_k(x)$ is a spline with multiple knots. Recall the definitions in (2.5) and (2.6). We define

$$M_{k}(x) = c_{k} \begin{vmatrix} \hat{\phi}_{1}(a) & \hat{\phi}_{2}(a) & \dots & \hat{\phi}_{n+1-k}(a) & \dots & \hat{\phi}_{n}(a) & \hat{\phi}_{n}(a;x) \\ 0 & \hat{\phi}_{2,2}(a) & \dots & \hat{\phi}_{2,n+1-k}(a) & \dots & \hat{\phi}_{2,n}(a) & \hat{\phi}_{2,n}(a;x) \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \hat{\phi}_{n+1-k,n+1-k}(a) & \dots & \hat{\phi}_{n+1-k,n}(a) & \hat{\phi}_{n+1-k,n}(a;x) \\ \hat{\phi}_{1}(x_{1}) & \hat{\phi}_{2}(x_{1}) & \dots & \hat{\phi}_{n+1-k}(x_{1}) & \dots & \hat{\phi}_{n}(x_{1}) & \hat{\phi}_{n}(x_{1};a) \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ \hat{\phi}_{1}(x_{k}) & \hat{\phi}_{2}(x_{k}) & \dots & \hat{\phi}_{n+1-k}(x_{k}) & \dots & \hat{\phi}_{n}(x_{k}) & \hat{\phi}_{n}(x_{k};a) \\ & & k = 1, 2, \dots, n-1, \quad (5.2) \end{vmatrix}$$

$$M_{k}(x) = c_{k} \begin{vmatrix} \hat{\phi}_{1}(x_{k-n}) & \hat{\phi}_{2}(x_{k-n}) & \dots & \hat{\phi}_{k-m}(x_{k-n}) & \dots & \hat{\phi}_{n}(x_{k-n}) & \hat{\phi}_{n}(x_{k-n};x) \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ \hat{\phi}_{1}(x_{m}) & \hat{\phi}_{2}(x_{m}) & \dots & \hat{\phi}_{k-m}(x_{m}) & \dots & \hat{\phi}_{n}(x_{m}) & \hat{\phi}_{n}(x_{m};x) \\ \hat{\phi}_{1}(b) & \hat{\phi}_{2}(b) & \dots & \hat{\phi}_{k-m}(b) & \dots & \hat{\phi}_{n}(b) & \hat{\phi}_{n}(b;x) \\ 0 & \hat{\phi}_{2,2}(b) & \dots & \hat{\phi}_{2,k-m}(b) & \dots & \hat{\phi}_{2,n}(b) & \hat{\phi}_{2,n}(b;x) \\ \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\ 0 & 0 & \dots & \hat{\phi}_{k-m,k-m}(b) & \dots & \hat{\phi}_{k-m,n}(b) & \hat{\phi}_{k-m,n}(b;x) \end{vmatrix} \\ k = m + 2, m + 3, \dots, m + n, \quad (5.3)$$

where c_k is the reciprocal of the given determinant with the last column replaced by

 $(\hat{\phi}_{n+1}(a), \hat{\phi}_{2,n+1}(a), \ldots, \hat{\phi}_{n+1-k,n+1}(a), \hat{\phi}_{n+1}(x_1), \ldots, \hat{\phi}_{n+1}(x_k))$

in (5.2), and in (5.3) by

$$(\hat{\phi}_{n+1}(x_{k-n}),\ldots,\hat{\phi}_{n+1}(x_m),\hat{\phi}_{n+1}(b),\hat{\phi}_{2,n+1}(b),\ldots,\hat{\phi}_{k-m,n+1}(b)).$$

For the remaining values of k, $M_k(x)$ is defined as is $M_{k-n}(x)$ in Section 2. As in Section 2, $c_k > 0$. (When m + 2 - n < 0, modifications as in (5.2) and (5.3) must be made, in both the upper and lower parts of the determinants defining some of the basic spline functions; see [4] for details.)

For these basic spline functions with multiple knots, results analogous to those in Section 2 are valid.

THEOREM 5.1. Let S(x) be a spline associated with the differential expression \mathcal{M}_n , with knots $\{x_j\}_{j=0}^{m+1}$, $x_j < x_{j+1}$, where x_j is a knot of multiplicity μ_j , $1 \leq \mu_j \leq n$. If $\mu = \sum_{j=0}^{m+1} \mu_j \geq n+1$, and S(x) = 0 for $x \notin [x_0, x_{m+1}]$, then S(x) can be represented uniquely in the form

$$S(x) = \sum_{j=1}^{\mu-n} c_j M_j(x),$$
 (5.4)

where $\{M_j(x)\}\$ is the set of basic spline functions for the given knots with the given multiplicities.

Proof. This theorem involves a straightforward generalization of Theorem 4.2, Chapter 10, of [3]; it was stated for the polynomial spline case in [1].

Therefore, there are unique representations

$$\phi_k(x) = \sum_{j=1}^{m+n} a_j^{(k)} M_j(x), \qquad a \leqslant x \leqslant b; k = 1, 2, ..., n,$$
(5.5)

where the $\phi_k(x)$ are as defined in (1.3) for $a \le x \le b$ and zero outside [a, b], and the $M_j(x)$ are the *B*-splines associated with \mathcal{M}_n and the knots $\{x_j\}_{j=0}^{m+1}$, as defined above. As in Section 3 for the case of an infinite number of knots, define

$$N_j(x) = d_j M_j(x), \qquad j = 1, 2, \dots, m+n,$$
 (5.6)

where the d_j are positive constants, to be determined. In order to obtain the desired representation, we need to determine $\{d_j\}_{j=1}^{m+n}$ and $\{z_j\}_{j=1}^{m+n}$, $a \leq z_j < z_{j+1} \leq b$, such that

 $a_j^{(k)}/d_j = \phi_k(z_j), \qquad k = 1, 2; j = 1, 2, \dots, m + n;$

so we need

$$a_{j}^{(2)}/a_{j}^{(1)} = \phi_{2}(z_{j})/\phi_{1}(z_{j}), \qquad j = 1, 2, \dots, m+n.$$
 (5.7)

As in Section 3, it is sufficient to show that $a_j^{(1)} > 0$, $a_j^{(2)}/a_j^{(1)}$ is strictly increasing in *j*, and $z_1, z_{m+n} \in [a, b]$.

THEOREM 5.2. Let $\{M_j(x)\}_{j=1}^{m+n}$ be the B-splines associated with \mathcal{M}_n and the knots $\{x_j\}_{j=0}^{m+1}$, as defined above. With $a_j^{(k)}$ defined as in (5.5),

$$\det \|a_{j_m}^{(l)}\|_{l,m=1}^k > 0; \qquad k = 1, 2, \dots, n; 1 \le j_1 < j_2 < \dots < j_k \le m+n.$$

Schoenberg stated this result for polynomial splines in [6], but the proof has not been published. One shows that

$$\det \|a_{j+r-1}^{(l)}\|_{l,j=1}^k > 0 \qquad \text{for } k = 1, 2, \dots, n; r = 1, 2, \dots, n + m - k + 1, \quad (5.8)$$

and then uses the Fekete theorem. However, if $1 \le k < n$ and $1 \le r \le n-k$, there is no $n \times n$ submatrix with the matrix in (5.8) in the upper-right corner. We can get our hands on the matrix in (5.8) by considering the system of equations

$$\phi_i(s) = \sum_{j=1}^n a_j^{(l)} M_j(s), \qquad i = 1, 2, \dots, p,$$

$$\hat{\phi}_n(x_{n+1}; s) = \sum_{j=1}^l c_j^{(l)} M_j(s), \qquad l = q, q - 1, \dots, 1,$$

$$M_{n-t+1}(s) = M_{n-t+1}(s), \qquad t = r, r - 1, \dots, 1,$$

where $a = x_0 < x < x_1$, and p, q, and r are non-negative integers such that p + q + r = n, $p \ge 1$. A few technical variations must be made in the method used to prove Theorem 3.1; see [4] for details.

LEMMA 5.3. We can define $\{z_j\}_{j=1}^{m+n}$ as in (5.7), with $z_1 = a$, $z_{m+n} = b$.

Proof. We can write $M_k(x) = \lim_{\substack{t \neq a}} M_k(x;t)$, $1 \le k \le n$, where $M_k(x;t)$ is defined similarly to $M_k(x)$, but with a replaced by t in the numerator. Since $M_k(x;t) \ge 0$, with strict inequality if and only if $t < x < x_k$ (see Theorem 1.1, Chapter 10, of [3]), $M_k(x) = 0$ unless $a < x < x_k$. $M_k(x)$ has a knot of multiplicity n + 1 - k at x = a for $1 \le k \le n$. Therefore, $M_k(x)$ is continuous at x = a for $2 \le k \le n$, so $M_k(x) \to 0$ as $x \downarrow a$ for these values of k. From the definition, it is clear that $M_1(x) \to c\phi_n(x_1)$ as $x \downarrow a$, $c \ne 0$. Therefore

$$0 = \lim_{x \downarrow a} \phi_2(x) = a_1^{(2)} c \hat{\phi}_n(x_1),$$

so we must have $a_1^{(2)} = 0$. Thus, if we define z_i by (5.7), $z_1 = a$.

It is easy to see that $M_j(x) \rightarrow 0$ as $x \uparrow b$ for j = 1, 2, ..., m + n - 1. Therefore,

$$\phi_2(b) = \lim_{x \uparrow b} \frac{a_{m+n}^{(2)}}{a_{m+n}^{(1)}} a_{m+n}^{(1)} M_{m+n}(x),$$

$$\phi_1(b) = \lim_{x \uparrow b} a_{m+n}^{(1)} M_{m+n}(x).$$

From these equations we see that (5.7) is valid for j = m + n if we choose $z_{m+n} = b$.

Let $\{z_j\}_{j=1}^{m+n}$ be defined by (5.7). We have shown that $z_j \in [a, b]$, and the z_j are strictly increasing. Define

$$N_j(x) = a_j^{(1)} M_j(x) / \phi_1(z_j), \qquad j = 1, 2, \dots, m + n.$$

We consider the generalized spline approximation

$$S(x) = \sum_{j=1}^{m+n} f(z_j) N_j(x), \qquad a \leqslant x \leqslant b.$$
(5.9)

THEOREM 5.4. The generalized spline approximation method defined in (5.9) is variation-diminishing on [a, b] and preserves functions of the form

$$A\phi_1(x)+B\phi_2(x).$$

Proof. The $N_j(x)$ and z_j have been chosen so that generalized linear functions are preserved. It can be shown, as in [3], Chapter 10, that $M_j(x)$ is totally

KARLIN AND KARON

positive in j and x, therefore $N_j(x)$ is also so. By the argument used in the proof of Theorem 3.3, this implies that the transformation in (5.9) is variation-diminishing.

REFERENCES

- 1. H. B. CURRY AND I. J. SCHOENBERG, On Pólya frequency functions IV: the fundamental spline functions and their limits. J. D'Analyse Math. 17 (1966), 71–107.
- 2. S. KARLIN AND Z. ZIEGLER, Chebyshevian spline functions. SIAM J. Numer. Anal. 3 (1966), 514-543.
- 3. S. KARLIN, "Total Positivity", vol. 1. Stanford University Press, Stanford, California, 1968.
- 4. J. KARON, The sign-regularity properties of a class of Green's functions for ordinary differential equations and some related results. Dissertation, Stanford University, 1968.
- 5. M. MARSDEN AND I. J. SCHOENBERG, On variation-diminishing spline approximation methods. Math. 8 (31), 1 (1966), 61-82.
- 6. I. J. SCHOENBERG, On spline functions. In "Inequalities" (ed. by O. Shisha). Academic Press, New York, 1967.