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SecTION 1. INTRODUCTION

In this paper we will define a generalized-spline approximation method
which is variation-diminishing and preserves functions which are linear in a
generalized sense. (Variation-diminishing transformations are defined in
Definition 1.3.) In Section 3 we will define an approximating spline with an
infinite number of knots. The modifications needed to prove similar results
for splines defined on a finite interval with a finite number of knots are in-
dicated in Section 5. Our results generalize the work of Schoenberg reported
in [6], where he stated without proofs corresponding results for the special
case of polynomial splines.

Our generalized splines are piecewise solutions of .#,u =0, where .#, is
a differential expression of the form

(.//l,,u)(x)=( 1 d 1 4 1 d 1

wn+l(x)3-;w,,(X)a;Wn_l(x).'.Ecwl(x)) u(x) (1.1)
with w;(x) > 0 and w(x) of continuity class C". It will be useful to define
(Lou)(x) = u(x),

d 1 d 1 d 1
(L) (x) = (21'; wj(x)d—x wj_(x) o dx wy(x)
A basic set of solutions for A& ,u=01is
¢1(x) = wy(x),
$a(x) = wi(x) f: wy(ty) dt,

.09 = i) [T wiltdey [T wiedts. . [ wiepde,  j=3,4,.m
(1.3)
where « is a fixed point. Actually, by suitable transformations of the dependent

and independent variables, we could assume that ¢,(x) = 1 and ¢,(x) = x — a.
Note that (L,—; ¢ ) (o) =8 ;wie), i, j=1,2,...,n.

)u(x), i=1,2,..,n (1.2)

1 This research was supported in part under Contract N0014-67-A-0112-0015 at Stanford
University, Stanford, California.
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256 KARLIN AND KARON

DerFINITION 1.1. S(x) is a generalized spline on (a,b) associated with .4,
with simple knots {x;}, if (A#,S)(x)=0 for xe(ab), x#x; and
S(x) € C"*(a,b).

The following notation is useful.

DeriNITION 1.2. Let f(x) be defined on a subset X of the real line. S™(f, X)
is the number of sign changes of f(x) as x traverses X, where zeros of f(x)
are not counted as changes in sign (see [3], page 20).

DErFINITION 1.3. A transformation T which maps a family of functions &
defined on X into functions defined on X, is called variation diminishing if

S™If; X)) < S7(f; X)
for all functions fin .

Variation-diminishing transformations are investigated extensively in {3].
Using these definitions, we can state our basic results.

THEOREM 3.3. Let {x;}5__, satisfy: x; < x;,, forallj; lim x;=a;limx;=b
j—o —w jow
(we allow a = —w, b = ©), Let f be defined on (a,b) and continuous. We can find
splines N (x), —0 < j < o, associated with M ,, with simple knots {x;}5__, and
points z;, —o < j< o0, a<z; <z <b,such that
o]

b(x) = j_z d(z)) Ny(x), i=1,2;a<x<b, (1.4)

=—00

S” (j if (z,) Ny(x); (a, b)) < S7(f;(a,b)). (1.5)

The N(x) and z; are independent of f(x). (The convergence of 2.3 _ f(2;) N,(x)
will hold, since, for each x, only a finite number of terms of the sum are distinct
from zero.)

THEOREM 5.4. Let —0 <a<x, <X, <...<X,<b<w. Let f be a con-
tinuous function defined in [a,b]. We can find splines N(x),j=1,2,...,m+n,
associated with M , with simple {x;Y}., and knots of multiplicity n at x = a (see

Definition 5.1), and points z;, a =z, <z, < ... < Zp.,= b, such that

m+n
$u(x) = 2} $i(z)N(x), i=12;a<x<b,

5% 7N a.b1) < (i bD.

The Ny(x) and z; are independent of f(x).
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The fact that the spline approximations are variation-diminishing and
preserve generalized linear functions implies that they preserve generalized
convexity properties, in the following sense: with S(x; /) = > f(z,) N(x),

ST(S(x; f)—a,¢i(x) — ay d:(x);(a, b)) = S(S(x; f— a, b, — ay $,);(a, b))
<S8 (f—a; ¢, —ar¢,;(a,b)).

Thus, if f is a generalized convex or concave function on (a,b), so is the
approximating spline S(x;f). (Generalized convexity is discussed in [3],
Chapter 6.)

Schoenberg announced the analogous results for polynomial splines in [6],
i.e., all w;(x) are constant, so .#, = d"/dx" and ¢,(x) = (x — «)’. He was able
to evaluate the nodes z; and splines N,(x) in some special cases and obtain
convergence estimates.

SECTION 2. BACKGROUND FOR SPLINES WITH SIMPLE KNOTS

Generalized splines on (a,b) associated with the differential expression .#,
are defined in Definition 1.1. Our results are based on a representation formula
for such splines as linear combinations of certain generalized basic spline
functions which were introduced by Karlin in [3] in the study of self-adjoint
differential expressions of the form (1.1). By modifying that definition, we can
consider non-self-adjoint differential expressions.

Let A » be the formal differential operator adjoint to .#,:

t d 1 d 1 d 1
wi(x) dx wy(x)dx wy(x)  dx wy (%)

M u(x) = (—1)"( )u(x). Q.1

Analogously to (1.2) and (1.3), we define
(Lou) (x) = u(x),
d 1 d 1 d 1
(L)~

dx Wni2—5(X) dx War3—(x) dx War1(X)

)u(x), i=1,2,...,n

(2.2)
and

~

$1(X) = Wpi1 (%),
$20) = W) [ wilt) dt

B4 = Wass®) [ Wil dty [ W st )l .

tn+3-f .
[ Wpr sz tisayy J=340m (23)

where « is a fixed point,
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{$,(x))_, is a basic set of solutions for j,.u = 0. The fundamental solution
associated with .#, is

0 xX<$s

;) = £ Wi wars() [ watdty [ wa i)ty [ Wit d,
1 § < Xx.
(2.4)

For fixed x, it is a generalized spline associated with M »s With a simple knot at
s = x. It is useful to define

b1, ulx58) = L2103 5)
= W) W2 @) [ Wi tnirog) s [ walts)diy
s<x, j=23,...,n, (2.5)
b=y )@ =Ly dd),  j=23...m Q6)

the differentiations in (2.5) are to be made with respect to x.
We will assume that we deal with splines with simple knots {x;}__, where
a= lim x;, b=1im x;, and x; <x;,,.

j—> — j—x

DEerinTION 2.1. The basic spline functions (B-splines) for the differential
expression .#, and knots {x;}._,, are

$1(xk) e $n(xk) $n(xk; x) ‘
_ $l(xk+n) ¢n(xk+n) ¢(xk+nsx) _ _
e e P — k= 101
2.7

In defining &, ,(x), we can choose w,,,(x) = 1.

Theorem 1.1 in Chapter 6 of [3] shows that the denominator of M, (x) is
strictly positive. It is easy to show that the definition of M, (x) is independent
of the choice of «; see [3], Chapter 10, Section 4. Therefore, M (x) is well-
defined.

M,(%) is a generalized nth divided difference of $,(x;s); in fact, in the
polynomial spline case, it is a constant times the nth divided difference of
du(x;8) = (x —s):"!. Note that M,(x) is a spline associated with .#,, with
simple knots at x = Xy, Xty + 05 Xgtne
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THEOREM 2.1. Let S(x) be a spline on (a,b) associated with M ,, with simple
knots {x;}5__.. Then S(x) can be represented uniquely in the form

S@= S ¢ M), (2.8)

J=—

where the c; are constants.

Proof. See [3], Chapter 10, Section 4.

The sum in (2.8) converges since, for any x, only a finite number of M,(x)
are nonzero. Indeed, Lemma 4.1 in Chapter 10 of [3] shows that M(x) >0
for all x, and M;(x) > 0 if, and only if, x; < x < x;, .

THEOREM 2.2. Let S(x) be a spline on (a,b) associated with M ,, with simple
knots {x;}7-_., admitting the representation (2.8). Then

S—(S(x): (Cl, b)) < S_({cj}?=—oo)'

Proof. M (x) is totally positive in j and x (see Theorem 4.1, Chapter 10, in
[3]). Any totally positive kernel induces a variation-diminishing transforma-
tion (see Theorem 3.1, Chapter 5, in [3]).

SECTION 3. A VARIATION-DIMINISHING GENERALIZED SPLINE
WITH AN INFINITE NUMBER OF KNOTS

We wish to find a variation-diminishing generalized spline associated with
M, with simple knote {x,}5__,, which preserves generalized linear functions.
Theorems 2.1 and 2.2 provide two of the key results.

We can regard ¢,(x) and ¢,(x) (see (1.3)) as splines associated with .#,,.
Therefore, according to Theorem 2.1, there are unique representations

qSk(x):j:ZmaY‘)Mj(x), k=1,2;a<x<b.
It will be useful to define
Nj(x) = d; M (x), (3.1
where the d; are positive constants, to be determined. In order to obtain the
desired representation, we need to determine {d,}7._, and {z;}7 _,,
a<z;<z;y <b,such that
a® .
7j=¢k(zj), k=1,2;—00 <j<oo; (3.2

and so we need
45‘2) _ ¢2(Zj}

o= T —o0 < f << o0, 33
5" 4z J (3-3)
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Since
$2()/$1(0) = [ wy(t) dt

is strictly increasing, in order to establish that {z,} is increasing, we must
show that

{aP/afd} (3.4)
is strictly increasing. Moreover, once {z,} is determined, we have
dy=aP$)(z)), —o<j<oo.

Therefore, we also wish to prove that
aV >0, -—w<j<owm, (3.5

In order to prove (3.4) and (3.5), we will establish the following more
general result (the proof is given in Section 4).

THEOREM 3.1. Let {M,(x)}._, be the B-splines associated with #, and the
simple knots {x,;}3.-, as defined in Section 2. Let

du(x) = Z aPMf(x), k=12,...,n5a<x<b. (3.6)

Then

det ”a(l)“k m=1"> 0, k = 1523 ey —® <jl <j2 <... <jk < .
3.7)

Schoenberg stated this result without proof for the case of polynomial
splines in [6].

Lemma 3.2. When (3.7) holds, we can choose the nodes z; in the interval
(a,b).

Proof. We will show that z; can be determined satisfving (3.3) with a < z;.
The proof that z; < b is similar.

Obviously, we may assume a> -, Suppose al®/a{" < ¢, (a)/$,(a) for
some i. Then

! @)
as
b= > A MW <O, x<r<xa, 69
J=i—n+1

since ¢, (x) = Dh_,_1 a§P M (x) when x; < x < x;,, (recall that M (x) # 0 iff
X; <X <Xy, ai” >0, and a{?/al? is strictly increasing. But (3.8) implies
¢.(x)/$,(x) < ¢,(a)/$,(a), contradicting the fact that ¢,(x)/$,(x) is strictly
increasing.
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Suppose that f (x) is defined on (a,b). The generalized spline

S = S f(z)Nyx) (3.9)

Jm—oo

is well-defined, where N;(x) is defined by (3.1) and (3.2), and z, is defined by
(3.3).

THEOREM 3.3. The generalized spline approximation S(x) defined in (3.9)
preserves functions of the form A (x) + Bo,(x) (A4 and B constants) and is
variation-diminishing on (a,b).

Proof. We have defined the N;(x) and z; in such a way that generalized
linear functions are preserved. Since a$" $,(z,) > 0, we see from Theorem 2.2
that

ST(S(x);(a.0)) < S7(f(z));—o <j< ).

{z;}%__, is strictly increasing, so

ST(f(z);—o <j < 0) < §7(f(x);(a,b)).

Remark. {z;} and {N(x)} depend on the choice of « used as an initial-value
point for ¢,(x).

SECTION 4. PROOF OF THEOREM 3.1

THEOREM 3.1. Let {M(x)}7__, be the basic spline functions associated with
the operator M, and simple knots {x;}?__.,., as defined in Section 2. Suppose
that

¢k(x)=j§ a$® M (x), k=1,2,...,n;a<x<b. “.1

Then

det[la®|f -1 >0, k=1,2,.. . n—o<ji<j<...<ji<o. (4.2)

Remark. We must prove that the determinant of any k x k submatrix
drawn from the first & rows of ||a{"|[:% ;__ is strictly positive. We will prove
this result for submatrices composed of consecutive columns, and then use
the Fekete theorem (Theorem 3.2 of Chapter 2 in [3]) to get (4.2). Since w,(x)
is independent of the initial value point x = & for the fundamental solution
set {&;(x)}1_1{((Li—1 ¢} () = wi(e)d;), it is easy to show that det||d,(x)I? ;-
is independent of the choice of «. Since M(x) is also independent of the
choice of «, we can assume that all B-splines are defined using the same
initial value point.
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Proof. We will need the following representation.

LemMMa 4.1. Forj=1,2,...,nand x,<$ < Xy,

Batnrsis) = 3 P M), 43)

where
¢ > 0. “.4)

Proof. When x, < 5 < X, ,, $u(x;;5)=0forj=1,2, ..., n. Therefore

M (s) = det ”$i(xj)“:l,j=l : $n(xn+l ;5)/det ”$i(xj)l ?,J}l:r
Since det||¢;(x;)|[! ;.; >0 (see [3], Chapter 6, Theorem 1.1), the lemma is
true for j= 1. The induction hypothesis is that (4.3) is true for j=1, 2, ...,
k — 1, 2 < k < n. Expanding M,(s), we get

k-1
M (s) = di $u(Xsk3 8) + ; d; pu(Xpii35),

dy, = det|[$i(xes - I, -1 /det | biCris - DIEEE L.
Since d, > 0, it is clear using the induction hypothesis that (4.3) is valid for
j=k.

In order to prove (4.2) for n — k x n — k submatrices composed of n — k
consecutive columns (k =0, 1, ..., n — 1), we consider the system of equations

(l)i(sj):yz::l a}(j)My(Sj)a i=1,2,...,n—k;
4.5
]
qS,,(x,,H;sj)=El P M (s), I=kk—1,..,1,
forj=1, 2, ..., n, where the s; are chosen so that x, < s; <8, <... <5, < Xpq;

(recall that M (x)#0 iff x, <x<x,). When k=0, the equations for
Gu(Xns1;5;) are omitted. In matrix form, (4.5) can be written

s |k
L =} Lo s @6
1BuCemers SO | 1 1Dt ¥ O |

where we define ¢{? =0 when i <}, and 0y, ,_, is the k X n — k zero matrix.
The determinant of the right-hand side of (4.6) is

n+1

> ifk ,
(—1)i-nk+2 (H C?’) ~det |lai Il - det | M (sm)llfme1 4.7

=1
n+l1

s 3 :
= (=1)i="**2 det llag i1
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since ¢{” > 0 and det | M (s))I[% ;_, > O (see [3], Chapter 10, Lemma 4.2); the

symbol ¢ = d means that ¢d > 0.

In order to evaluate the determinant of the matrix on the left side of (4.6),
we need the following representation, which is the non-self adjoint version
of a representation formula in [2].

LEMMA 4.2.
Bixi) = 3 7 080, s @38)

Proof. It is easy to see that # $,(x;s) =0 for s < x (the differentiations
are to be performed with respect to s). Therefore, we can write
AGHEPRICLYC
for s < x. In order to determine the coefficient of ¢(s), operate on @,(x;s)

with L, (defined in (1.2)) and set s = «. That (4.8) holds when s < «, follows
from the unicity of the initial-value problem for ordinary differential equations.

Let

ay(x) = (1) i1 y(). 4.9)
By using the representation (4.8), the determinant of the left side of (4.6) can
be written as
(sl 557
st |
where b,(s) = 2>"_, a,(x,;1) ¢.(s). The matrix of (4.10) can be written in the
form

(4.10)

Iy 0,

l&' (s )IE 515

Haj(an)Hzl;';c,j: 1
where I,_, is the n — k x n — k identity matrix. Therefore, the determinant
(4.10) is equal to

det Haj(xn+l)Hll;';'c,j=n—k+l -det H(ﬁi(sj)n?,j:l- (4-11)

According to the Remark above, we can assume that the initial value point «
satisfies o < 5;. Then det||,(s;)|} ;. > 0 by Theorem 1.1, Chapter 6 of [3].
According to (4.9), the first determinant in (4.11) is
in—1
- 3 .
det H(—l)"_j ¢j(xn+l)”ll,j=k = (—1)="* det ”¢i(xn+l)”;(,j=l

n—1

Z (_1)13;-_:3' .
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Comparing this with (4.7), we see that det|a{?|t-%"_, ,, > 0. Using a suitable
translation, the same proof shows that

detlaP|fm-1>0, k=1,..,nj—o<m<co, (4.12)

To finish the proof, we remove the restriction that the columns be con-
secutive, by applying the Fekete theorem ([3], Chapter 2, Theorem 3.2)
successively to (4.12), with k=1, k=2, ..., k=n.

SECTION 5. A VARIATION-DIMINISHING SPLINE FOR A FINITE INTERVAL
wiITH FINITELY-MANY KNOTS

As mentioned in Section 1, Schoenberg [6] pointed out that the key to find-
ing a variation-diminishing polynomial spline with finitely many knots in
(a,b), which also preserves generalized linear functions on [a,b], is the
introduction of knots of multiplicity # at x =@ and x = b. In this section we
will define a generalized spline with these properties.

DEerINITION 5.1, Let {x;} satisfy x; < x;;;. S(x) is a generalized spline with
knots {x;}, associated with the differential expression .#, (see (1.1)), if
(A,S)(x) =0, x  x;. x; is called a knot of multiplicity p if

S(x) e C" " ¥[x; — e, x; + €]

for small positive e,

A knot of multiplicity one is a simple knot, and S(x) has a jump discon-
tinuity at a knot of multiplicity ». See [3], Chapter 10, for more details.

We will want to consider continuous functions defined on a finite interval
[a,b] and approximating splines with m simple knots {x;}7, in (a,b),
A<Xx; <Xy<..<X,<b. We introduce knots of multiplicity n at x=a
and at x = b, so S(x) has a jump discontinuity at these two points. We will
assume that

S(x) =0, x<a;x>b. 5.1

Set xo =a, Xms; = b. Let {d,(x)}"_, be a basic set of solutions for ./é,,u =0,
as in (2.3), with initial values at x = a: (£,_, $,)(@) = w,,,_,(@)d,;.

The definition of the basic spline functions in Section 2 has to be modified
fork=1,2,...,n—land k=m+2,m+3, ..., m+n, as for these values
M, (x) is a spline with multiple knots. Recall the definitions in (2.5) and (2.6).
We define
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d/;l(a) $2(a) e $n+l—k(a) . <z;'n(a) $,,(d;X)

0 $2’ Z(a) e $2’ n+l—~k(a) e $2’ n(a) $2: n(a; X)
M(x)=c|0 0 cen $n+1—ka nr1-1(@) .. $n+l—k7n(a) ‘£n+1—k: a;x) |,

$1(x1) ¢A’2(x1) $n+l—k(xl) $n(xl) $n(x1;a)

$l(xk) $2(xk) oo $n+l—k(xk) $n(xk) $n(xk;a)

k=1,2,...,n~1, (5.2
$l(xk—n) $2(xk—n) e $k—-m(xk—n) e $n(xk—n) $n(xk—n; X)

$1(xm) $2(xm) e $k—m(xm) v $n(xm) $n(xm; X)
M(x) = c| $,(b) $2(b) oo Prm(®) X () $ulb; %) >
0 $2’ Z(b) e <$2, k—-m(b) s $2’ n(b) $2: n(bs x)

0 0 e $k—m’ k—m(b) L $k~m’ n(b) $k—ma n(b s x)
k=m+2m+3,...m+n, 5.3)

where ¢, is the reciprocal of the given determinant with the last column
replaced by

($n+1(a)= $2,n+l(a)> Y SN ()} RE7) NN $n+l(xk))
in (5.2), and in (5.3) by

($n+l(xk-—n)a (] $n+l(xm), $n+l(b)> $Zs n+l(b), LR $k-m9 n+1(b))'
For the remaining values of k, M,(x) is defined as is M,_,(x) in Section 2.
As in Section 2, ¢ > 0. (When m + 2 — n < 0, modifications as in (5.2) and
(5.3) must be made, in both the upper and lower parts of the determinants
defining some of the basic spline functions; see [4] for details.)

For these basic spline functions with multiple knots, results analogous to

those in Section 2 are valid.

THEOREM 5.1. Let S(x) be a spline associated with the differential expression
M, with knots {x; 70, x;<x;,, where x; is a knot of multiplicity u;,
l<py<nlf u=2"0 u;=n+1, and S(x) =0 for x ¢ [xg, X+ ], then S(x)
can be represented uniquely in the form

S@="3 ¢, M), 54
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where {M (x)} is the set of basic spline functions for the given knots with the
given multiplicities.

Proof. This theorem involves a straightforward generalization of Theorem
4.2, Chapter 10, of [3]; it was stated for the polynomial spline case in [/].
Therefore, there are unique representations

mtn
du(x) = -21 aP M(x), a<x<b;jk=12,...,n, (5.5

=
where the ¢,(x) are as defined in (1.3) for @ < x < b and zero outside [a,5],
and the M;(x) are the B-splines associated with .#, and the knots {x,}7%],
as defined above. As in Section 3 for the case of an infinite number of knots,
define
Nx)=d;M(x), j=12,...m+n, (5.6)

where the d; are positive constants, to be determined. In order to obtain
the desired representation, we need to determine {d;}7*' and {z,}77,
a<z;<z;;<b,such that

aPld; = ¢i(z;), k=1,2;j=1,2,...,m+n;
so we need

a_S'Z)/aS'I) = ¢2(Zj)/¢l(zj)’ .] = 13 2a DR (. +n. (5'7)
As in Section 3, it is sufficient to show that a$” > 0, a{®/a$" is strictly increasing
in j, and z,, z,, € [a,b].

THEOREM 5.2. Let {M(x)}7"!" be the B-splines associated with M, and the

knots {x;}7*3, as defined above. With a{ defined as in (5.5),
detllafPlf .., >0;  k=12,...ml<j<j<...<ji<m+n.

Schoenberg stated this result for polynomial splines in {6], but the proof
has not been published. One shows that

det|la®. |k ;21 >0 fork=1,2,...n;r=12,..,n4+m—k+1, (58
and then uses the Fekete theorem. However, if | <k <nand l<r<n—k,
there is no n x 7 submatrix with the matrix in (5.8) in the upper-right corner.
We can get our hands on the matrix in (5.8) by considering the system of
equations

$ils) = ng aPMys), i=12,...,p,

1
PulXns138) = 2 P M) I=g.q-1,...1,
P

Mn—t+l(s)=M—t+l(s)9 t=rr— 19-'-31’
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where a =x, < x < Xx;, and p, g, and r are non-negative integers such that
p+q+r=n,p>=1. A few technical variations must be made in the method
used to prove Theorem 3.1; see [4] for details.

LEMMA 5.3. We can define {z,;}727 as in (5.7), with z, = a, z,y,, = b.

Proof. We can write M (x)=1im M(x;t), 1 <k <n, where M (x;t) is
tya

defined similarly to M,(x), but with a replaced by ¢ in the numerator. Since
M, (x;t) > 0, with strict inequality if and only if # < x < x; (see Theorem 1.1,
Chapter 10, of [3]), M (x) =0 unless a < x < x;. M,(x) has a knot of multi-
plicity n+ 1 —k at x =a for 1<k < n. Therefore, M,(x) is continuous at
x=a for 2<k <n, so M(x) —0 as x | a for these values of k. From the
definition, it is clear that M,(x) — ¢¢,(x,) as x | a, ¢ # 0. Therefore

0= llm (ﬁz(-x) = a(12) C¢n(xl)a

so we must have a{® = 0. Thus, if we define z; by (5.7), z, = a.
It is easy to seethatM(x)ﬁOasbefor]—l 2,...,m+n—1. There-
fore,
a@

¢2(b) =lim '(nl-*)—" a1$11+)n M, +,,(X),
x4thb Qmin

¢ (b) = hm aSnl-l)—n M +n(x)'

From these equations we see that (5.7) is valid for j=m + n if we choose
Zmn = b.

Let {z;}74I" be defined by (5.7). We have shown that z; € [a,b], and the z;
are strictly increasing. Define
Ni(x)=a® M)(x)/\(zy), j=12,....m+n.

We consider the generalized spline approximation

m+n

S0 = 3 fEINM,  a<x<b. (5.9)

THEOREM 5.4. The generalized spline approximation method defined in (5.9)
is variation-diminishing on {a,b)] and preserves functions of the form

A (x) + Bpy(x).

Proof. The N;(x) and z; have been chosen so that generalized linear functions
are preserved. It can be shown, as in [3], Chapter 10, that M (x) is totally
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positive in j and x, therefore N (x) is also so. By the argument used in the
proof of Theorem 3.3, this implies that the transformation in (5.9) is variation-
diminishing.
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